Suppr超能文献

通过人工神经网络建模预测烧伤患者对耐甲氧西林金黄色葡萄球菌感染的氨基糖苷类药物反应

Prediction of aminoglycoside response against methicillin-resistant Staphylococcus aureus infection in burn patients by artificial neural network modeling.

作者信息

Yamamura Shigeo, Kawada Keiko, Takehira Rieko, Nishizawa Kenji, Katayama Shirou, Hirano Masaaki, Momose Yasunori

机构信息

School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, Japan.

出版信息

Biomed Pharmacother. 2008 Jan;62(1):53-8. doi: 10.1016/j.biopha.2007.11.004. Epub 2007 Dec 3.

Abstract

OBJECTIVE

To predict the response of aminoglycoside antibiotics (arbekacin: ABK) against methicillin-resistant Staphylococcus aureus (MRSA) infection in burn patients after considering the severity of the burn injury by using artificial neural network (ANN). Predictive performance was compared with logistic regression modeling.

METHODOLOGY

The physiologic data and some indicators of the severity of the burn injury were collected from 25 burn patients who received ABK against MRSA infection. A three-layered ANN architecture with six neurons in the hidden layer was used to predict the ABK response. The response was monitored using three clinical criteria: number of bacteria, white blood cell count, and C-reactive protein level. Robustness of models was investigated by the leave-one-out cross-validation.

RESULTS

The peak plasma level, serum creatinine level, duration of ABK administration, and serum blood sugar level were selected as the linear input parameters to predict the ABK response. The area of the burn after skin grafting was the best parameter for assessing the severity of the burn injury in patients to predict the ABK response in the ANN model. The ANN model with the severity of the burn injury was superior to the logistic regression model in terms of predicting the performance of the ABK response.

CONCLUSION

Based on the patients' physiologic data, ANN modeling would be useful for the prediction of the ABK response in burn patients with MRSA infection. Severity of the burn injury was a parameter that was necessary for better prediction.

摘要

目的

通过使用人工神经网络(ANN),在考虑烧伤严重程度后,预测氨基糖苷类抗生素(阿贝卡星:ABK)对烧伤患者耐甲氧西林金黄色葡萄球菌(MRSA)感染的反应。将预测性能与逻辑回归模型进行比较。

方法

从25例接受ABK治疗MRSA感染的烧伤患者中收集生理数据和一些烧伤严重程度指标。使用隐藏层有六个神经元的三层ANN架构来预测ABK反应。使用三个临床标准监测反应:细菌数量、白细胞计数和C反应蛋白水平。通过留一法交叉验证研究模型的稳健性。

结果

选择血浆峰值水平、血清肌酐水平、ABK给药持续时间和血清血糖水平作为预测ABK反应的线性输入参数。植皮后烧伤面积是评估患者烧伤严重程度以预测ANN模型中ABK反应的最佳参数。在预测ABK反应性能方面,考虑烧伤严重程度的ANN模型优于逻辑回归模型。

结论

基于患者的生理数据,ANN建模对于预测MRSA感染烧伤患者的ABK反应将是有用的。烧伤严重程度是更好预测所必需的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验