Suppr超能文献

趋化因子与神经性疼痛的病理生理学

Chemokines and the pathophysiology of neuropathic pain.

作者信息

White Fletcher A, Jung Hosung, Miller Richard J

机构信息

Department of Cell Biology, Loyola University Chicago, Maywood, IL 60626, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20151-8. doi: 10.1073/pnas.0709250104. Epub 2007 Dec 14.

Abstract

Chemokines and chemokine receptors are widely expressed by cells of the immune and nervous systems. This review focuses on our current knowledge concerning the role of chemokines in the pathophysiology of chronic pain syndromes. Injury- or disease-induced changes in the expression of diverse chemokines and their receptors have been demonstrated in the neural and nonneural elements of pain pathways. Under these circumstances, chemokines have been shown to modulate the electrical activity of neurons by multiple regulatory pathways including increases in neurotransmitter release through Ca-dependent mechanisms and transactivation of transient receptor channels. Either of these mechanisms alone, or in combination, may contribute to sustained excitability of primary afferent and secondary neurons within spinal pain pathways. Another manner in which chemokines may influence sustained neuronal excitability may be their ability to function as excitatory neurotransmitters within the peripheral and central nervous system. As is the case for traditional neurotransmitters, injury-induced up-regulated chemokines are found within synaptic vesicles. Chemokines released after depolarization of the cell membrane can then act on other chemokine receptor-bearing neurons, glia, or immune cells. Because up-regulation of chemokines and their receptors may be one of the mechanisms that directly or indirectly contribute to the development and maintenance of chronic pain, these molecules may then represent novel targets for therapeutic intervention in chronic pain states.

摘要

趋化因子和趋化因子受体在免疫系统和神经系统细胞中广泛表达。本综述聚焦于我们目前关于趋化因子在慢性疼痛综合征病理生理学中作用的认识。在疼痛通路的神经和非神经成分中,已证实损伤或疾病诱导的多种趋化因子及其受体表达变化。在这些情况下,趋化因子已被证明可通过多种调节途径调节神经元的电活动,包括通过钙依赖机制增加神经递质释放以及瞬时受体通道的反式激活。这些机制单独或联合作用,都可能导致脊髓疼痛通路中初级传入神经元和次级神经元的持续兴奋性。趋化因子影响神经元持续兴奋性的另一种方式可能是它们在周围和中枢神经系统中作为兴奋性神经递质发挥作用的能力。与传统神经递质一样,损伤诱导上调的趋化因子存在于突触小泡中。细胞膜去极化后释放的趋化因子随后可作用于其他带有趋化因子受体的神经元、神经胶质细胞或免疫细胞。由于趋化因子及其受体的上调可能是直接或间接导致慢性疼痛发生和维持的机制之一,因此这些分子可能代表慢性疼痛状态治疗干预的新靶点。

相似文献

1
Chemokines and the pathophysiology of neuropathic pain.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20151-8. doi: 10.1073/pnas.0709250104. Epub 2007 Dec 14.
2
Chemokines as pain mediators and modulators.
Curr Opin Anaesthesiol. 2008 Oct;21(5):580-5. doi: 10.1097/ACO.0b013e32830eb69d.
3
Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.
Cell Mol Life Sci. 2017 Sep;74(18):3275-3291. doi: 10.1007/s00018-017-2513-1. Epub 2017 Apr 7.
4
Role of the immune system in neuropathic pain.
Scand J Pain. 2019 Dec 18;20(1):33-37. doi: 10.1515/sjpain-2019-0138.
5
Chemokines and pain mechanisms.
Brain Res Rev. 2009 Apr;60(1):125-34. doi: 10.1016/j.brainresrev.2008.12.002. Epub 2008 Dec 25.
6
The importance of chemokines in neuropathic pain development and opioid analgesic potency.
Pharmacol Rep. 2018 Aug;70(4):821-830. doi: 10.1016/j.pharep.2018.01.006. Epub 2018 Feb 1.
7
Chemokines, neuronal-glial interactions, and central processing of neuropathic pain.
Pharmacol Ther. 2010 Apr;126(1):56-68. doi: 10.1016/j.pharmthera.2010.01.002. Epub 2010 Feb 1.
8
Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury.
J Biol Chem. 2013 Aug 16;288(33):24116-27. doi: 10.1074/jbc.M113.454140. Epub 2013 Jul 8.
9
Cytokine and chemokine regulation of sensory neuron function.
Handb Exp Pharmacol. 2009(194):417-49. doi: 10.1007/978-3-540-79090-7_12.
10
The immune aspect in neuropathic pain: role of chemokines.
Acta Anaesthesiol Taiwan. 2013 Sep;51(3):127-32. doi: 10.1016/j.aat.2013.08.006. Epub 2013 Oct 7.

引用本文的文献

1
Anti-Inflammatory Pathways Mediating tDCS's Effects on Neuropathic Pain.
Biology (Basel). 2025 Jul 20;14(7):892. doi: 10.3390/biology14070892.
6
Update on Biomarkers of Chronic Inflammatory Processes Underlying Diabetic Neuropathy.
Int J Mol Sci. 2024 Sep 27;25(19):10395. doi: 10.3390/ijms251910395.
7
Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain.
PNAS Nexus. 2024 Aug 30;3(9):pgae362. doi: 10.1093/pnasnexus/pgae362. eCollection 2024 Sep.
8
Causal association between circulating inflammatory markers and sciatica development: a Mendelian randomization study.
Front Neurol. 2024 Jul 2;15:1380719. doi: 10.3389/fneur.2024.1380719. eCollection 2024.

本文引用的文献

3
Chemical interactions between fibrosarcoma cancer cells and sensory neurons contribute to cancer pain.
J Neurosci. 2007 Sep 19;27(38):10289-98. doi: 10.1523/JNEUROSCI.2851-07.2007.
4
Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses.
Neuroscience. 2007 Nov 9;149(3):706-14. doi: 10.1016/j.neuroscience.2007.08.014. Epub 2007 Aug 14.
5
Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain.
Brain. 2007 Oct;130(Pt 10):2688-702. doi: 10.1093/brain/awm195. Epub 2007 Aug 30.
6
Pathophysiology of peripheral neuropathic pain: immune cells and molecules.
Anesth Analg. 2007 Sep;105(3):838-47. doi: 10.1213/01.ane.0000275190.42912.37.
7
TRPA1 mediates formalin-induced pain.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13525-30. doi: 10.1073/pnas.0705924104. Epub 2007 Aug 8.
8
4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13519-24. doi: 10.1073/pnas.0705923104. Epub 2007 Aug 7.
10
Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10655-60. doi: 10.1073/pnas.0610811104. Epub 2007 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验