Suppr超能文献

MDMX在G1期和S期早期促进p21的蛋白酶体周转,这一过程独立于MDM2,但与MDM2协同作用。

MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2.

作者信息

Jin Yetao, Zeng Shelya X, Sun Xiao-Xin, Lee Hunjoo, Blattner Christine, Xiao Zhixiong, Lu Hua

机构信息

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS4053, Indianapolis, IN 46202, USA.

出版信息

Mol Cell Biol. 2008 Feb;28(4):1218-29. doi: 10.1128/MCB.01198-07. Epub 2007 Dec 17.

Abstract

We have shown previously that MDM2 promotes the degradation of the cyclin-dependent kinase inhibitor p21 through a ubiquitin-independent proteolytic pathway. Here we report that the MDM2 analog, MDMX, also displays a similar activity. MDMX directly bound to p21 and mediated its proteasomal degradation. Although the MDMX effect was independent of MDM2, they synergistically promoted p21 degradation when coexpressed in cells. This degradation appears to be mediated by the 26S proteasome, as MDMX and p21 bound to S2, one of the subunits of the 19S component of the 26S proteasome, in vivo. Conversely, knockdown of MDMX induced the level of endogenous p21 proteins that no longer cofractionated with 26S proteasome, resulting in G(1) arrest. The level of p21 was low at early S phase but markedly induced by knocking down either MDMX or MDM2 in human cells. Ablation of p21 rescued the G(1) arrest caused by double depletion of MDM2 and MDMX in p53-null cells. These results demonstrate that MDMX and MDM2 independently and cooperatively regulate the proteasome-mediated degradation of p21 at the G(1) and early S phases.

摘要

我们之前已经表明,MDM2通过一条不依赖泛素的蛋白水解途径促进细胞周期蛋白依赖性激酶抑制剂p21的降解。在此我们报告,MDM2类似物MDMX也表现出类似的活性。MDMX直接与p21结合并介导其蛋白酶体降解。尽管MDMX的作用不依赖于MDM2,但当它们在细胞中共表达时会协同促进p21的降解。这种降解似乎是由26S蛋白酶体介导的,因为在体内MDMX和p21与26S蛋白酶体19S组分的亚基之一S2结合。相反,敲低MDMX会诱导内源性p21蛋白水平升高,这些蛋白不再与26S蛋白酶体共分级,导致G1期停滞。在人类细胞中,p21水平在S期早期较低,但通过敲低MDMX或MDM2会明显诱导其升高。在p53缺失的细胞中,敲除p21可挽救由MDM2和MDMX双缺失导致的G1期停滞。这些结果表明,MDMX和MDM2在G1期和S期早期独立且协同地调节蛋白酶体介导的p21降解。

相似文献

1
MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2.
Mol Cell Biol. 2008 Feb;28(4):1218-29. doi: 10.1128/MCB.01198-07. Epub 2007 Dec 17.
2
14-3-3Gamma inhibition of MDMX-mediated p21 turnover independent of p53.
J Biol Chem. 2011 Feb 18;286(7):5136-42. doi: 10.1074/jbc.M110.190470. Epub 2010 Dec 9.
3
Effects of MdmX on Mdm2-mediated downregulation of pRB.
FEBS Lett. 2006 Mar 20;580(7):1753-8. doi: 10.1016/j.febslet.2006.02.029. Epub 2006 Feb 21.
4
Abnormal MDMX degradation in tumor cells due to ARF deficiency.
Oncogene. 2012 Aug 9;31(32):3721-32. doi: 10.1038/onc.2011.534. Epub 2011 Nov 28.
6
Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53.
Mol Biol Rep. 2011 Jan;38(1):229-36. doi: 10.1007/s11033-010-0099-x. Epub 2010 Mar 24.
7
MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53.
J Biol Chem. 2004 Apr 16;279(16):16000-6. doi: 10.1074/jbc.M312264200. Epub 2004 Feb 3.
8
MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation.
EMBO J. 2003 Dec 1;22(23):6365-77. doi: 10.1093/emboj/cdg600.
10
Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation.
Cell Cycle. 2008 Jun 1;7(11):1604-12. doi: 10.4161/cc.7.11.5929. Epub 2008 Mar 17.

引用本文的文献

1
Cellular carcinogenesis in preleukemic conditions:drivers and defenses.
Fukushima J Med Sci. 2024 Jan 27;70(1):11-24. doi: 10.5387/fms.2023-17. Epub 2023 Nov 11.
2
Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2.
FEBS Lett. 2022 Nov;596(21):2746-2767. doi: 10.1002/1873-3468.14436. Epub 2022 Jul 21.
3
Contribution of MicroRNAs in Chemoresistance to Cisplatin in the Top Five Deadliest Cancer: An Updated Review.
Front Pharmacol. 2022 Apr 4;13:831099. doi: 10.3389/fphar.2022.831099. eCollection 2022.
4
SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes.
Front Genet. 2021 Dec 1;12:793523. doi: 10.3389/fgene.2021.793523. eCollection 2021.
5
MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2102420118.
6
Mdm4 supports DNA replication in a p53-independent fashion.
Oncogene. 2020 Jun;39(25):4828-4843. doi: 10.1038/s41388-020-1325-1. Epub 2020 May 19.
8
Synergistic repression of thyroid hyperplasia by cyclin C and Pten.
J Cell Sci. 2019 Aug 15;132(16):jcs230029. doi: 10.1242/jcs.230029.
9
Frequent amplifications of ESR1, ERBB2 and MDM4 in primary invasive lobular breast carcinoma.
Cancer Lett. 2019 Oct 1;461:21-30. doi: 10.1016/j.canlet.2019.06.011. Epub 2019 Jun 20.

本文引用的文献

1
Glycogen synthase kinase 3beta phosphorylates p21WAF1/CIP1 for proteasomal degradation after UV irradiation.
Mol Cell Biol. 2007 Apr;27(8):3187-98. doi: 10.1128/MCB.01461-06. Epub 2007 Feb 5.
2
Inactivation of the p53 pathway in retinoblastoma.
Nature. 2006 Nov 2;444(7115):61-6. doi: 10.1038/nature05194.
3
UV Induces p21 rapid turnover independently of ubiquitin and Skp2.
J Biol Chem. 2006 Sep 15;281(37):26876-83. doi: 10.1074/jbc.M605366200. Epub 2006 Jun 27.
4
14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation.
EMBO J. 2006 Mar 22;25(6):1207-18. doi: 10.1038/sj.emboj.7601010. Epub 2006 Mar 2.
5
Regulation of MDMX nuclear import and degradation by Chk2 and 14-3-3.
EMBO J. 2006 Mar 22;25(6):1196-206. doi: 10.1038/sj.emboj.7601032. Epub 2006 Mar 2.
6
MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein.
Mol Cell. 2005 Dec 9;20(5):699-708. doi: 10.1016/j.molcel.2005.10.017.
7
9
Mechanisms of tumor suppression by the SCF(Fbw7).
Cell Cycle. 2005 Oct;4(10):1356-9. doi: 10.4161/cc.4.10.2058. Epub 2005 Oct 27.
10
Mdmx as an essential regulator of p53 activity.
Biochem Biophys Res Commun. 2005 Jun 10;331(3):750-60. doi: 10.1016/j.bbrc.2005.03.151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验