Cecchettini A, Scarcelli V, Locci M T, Masetti M, Giorgi F
Department of Human Morphology and Applied Biology, Via A. Volta 4, 56126 Pisa, Italy.
Arthropod Struct Dev. 2002 Feb;30(3):243-50. doi: 10.1016/s1467-8039(01)00031-7.
A panel of monoclonal antibodies was raised against late yolk sacs of the stick insect Carausius morosus and tested by immunoblotting to establish the extent vitellin polypeptides are processed proteolytically during embryonic development. Cryosections of late yolk sacs were also examined by confocal laser microscopy to determine how vitellin cleavage products become spatially distributed amongst yolk granules during the same developmental period. Distinct labelling patterns were obtained on yolk granules depending on: (1) the nature of the proteolytic processing; (2) the origin of vitellin cleavage products; and ultimately (3) their molecular sizes. Monoclonal antibodies raised against vitellin cleavage products resulting from proteolytic processing appeared to label: (1) the entire volume of many yolk granules; (2) their limiting membrane; or (3) a number of small vesicles interposed between larger yolk granules. On the other hand, monoclonal antibodies against vitellin cleavage products that remain invariant throughout development appeared to label either the serosa membrane or the cytosolic space comprised between adjacent yolk granules. Data are interpreted as indicating that vitellin cleavage products may leak out from the yolk granules, gain access to the cytosolic space of the vitellophages and eventually percolate through the serosa membrane enclosing the yolk sac.