Vincent Julian F V, Wegst Ulrike G K
Department of Mechanical Engineering, The University of Bath, Bath BA2 7AY, UK.
Arthropod Struct Dev. 2004 Jul;33(3):187-99. doi: 10.1016/j.asd.2004.05.006.
Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.
由于几乎所有成年昆虫都会飞行,因此表皮必须提供一种非常高效且轻质的骨骼。关于表皮的力学性能已有相关信息——弹性蛋白的杨氏模量约为1兆帕,软表皮约为1千帕至50兆帕,硬化表皮为1至20吉帕;硬化表皮的维氏硬度在25至80千克力/平方毫米之间;密度为1至1.3千克/立方米——其成分之一几丁质纳米纤维的杨氏模量超过150吉帕。尽管分层结构可能具有一定的增韧作用,但尚未进行基于断裂力学的实验。翅膀和腿部的结构性能已被测量,但我们对屈曲重要性的理解仍有欠缺:它可以使结构变硬(例如通过翅膀中的弹性后屈曲),也可能是一种失效模式。我们对疲劳性能一无所知(例如,昆虫翅膀必须经历数百万次循环,每次循环都会弯曲或屈曲)。表皮卓越的力学性能和效率可以通过材料性能图表和材料指数进行分析,并与其他材料进行比较。本文介绍了四个方面:杨氏模量 - 密度(单位重量的刚度)、比杨氏模量 - 比强度(弹性铰链、单位重量的弹性储能)、韧性 - 杨氏模量(各种加载条件下的抗断裂能力)以及硬度(耐磨性)。结合表皮的结构分析,这些图表有助于理解这种纤维复合材料的微观结构(例如肌腱、关节和感觉器官中的纤维取向效应)和形状(包括表面结构)与特定功能的相关性。借助现代结构和材料分析技术,并强调纳米复合材料和自组装,昆虫表皮应成为各级尺度复合材料的原型。