Mamat Uwe, Meredith Timothy C, Aggarwal Parag, Kühl Annika, Kirchhoff Paul, Lindner Buko, Hanuszkiewicz Anna, Sun Jennifer, Holst Otto, Woodard Ronald W
Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany.
Mol Microbiol. 2008 Feb;67(3):633-48. doi: 10.1111/j.1365-2958.2007.06074.x. Epub 2007 Dec 18.
The Escherichia coli K-12 strain KPM22, defective in synthesis of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IV(A), a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second-site suppressor was proposed for transport of lipid IV(A) from the inner membrane (IM), thus relieving toxic side-effects of lipid IV(A) accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal DeltaKdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IV(A) transmembrane trafficking. The independent derivation of a series of non-conditional KPM22-like mutants from the Kdo-dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild-type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA.
大肠杆菌K-12菌株KPM22在3-脱氧-D-甘露糖-辛-2-酮糖酸(Kdo)合成方面存在缺陷,它能够存活,其外膜(OM)主要由脂质IV(A)组成,脂质IV(A)是脂多糖(LPS)生物合成的前体,缺乏任何糖基化修饰。为了维持生存能力,有人提出存在一个第二位点抑制子,用于将脂质IV(A)从内膜(IM)转运出去,从而减轻脂质IV(A)积累的毒性副作用,并提供足够量的LPS前体以支持外膜生物合成。我们现在报告,在KPM22中保守的内膜蛋白YhjD的第134位发生了精氨酸到半胱氨酸的取代,该取代作为致死性ΔKdo表型的补偿性抑制突变。此外,yhjD400抑制等位基因使LPS转运蛋白MsbA对于脂质IV(A)跨膜运输变得可有可无。从依赖Kdo的亲本菌株TCM15独立衍生出一系列非条件性的KPM22样突变体,揭示了第二类抑制突变定位于MsbA。MsbA的第18位或第50位残基发生脯氨酸到丝氨酸的取代,缓解了同基因野生型菌株中观察到的对Kdo的生长依赖性。通过MsbA的计算推导穿线模型讨论了这些抑制突变对结构和功能的可能影响。