Suppr超能文献

Limited proteolysis of cytoplasmic and nuclear uterine estradiol receptors yields identical estradiol-binding fragments.

作者信息

Vallet-Strouve C, Rat L, Sala-Trepat J M

出版信息

Eur J Biochem. 1976 Jul 1;66(2):327-37. doi: 10.1111/j.1432-1033.1976.tb10522.x.

Abstract

Limited tryptic hydrolysis of the estradiol cytoplasmic receptor from calf uterus has been demonstrated to yield in a high-salt buffer a stable estradiol-binding molecule with the following characteristics: sedimentation coefficient 4.0 +/- 0.1 S; Stokes radius 3.5 +/- 0.05 nm; molecular weight 60000 (for an assumed v value of 0.73 ml g-1) and frictional ratio 1.36. Nuclear KCl extracts, prepared from uteri preincubated at 37 degrees C with labeled estradiol, were analysed by Sephadex G-200 chromatography and sucrose density gradient centrifugation. The following molecular parameters were found for the estradiol-receptor complex: sedimentation coefficient 4.4 +/- 0.1 S; Stokes radius 4.12 +/- 0.02 nm; molecular weight 77000 and frictional ratio 1.47 (v = 0.73 ml g-1). Limited tryptic proteolysis of this extract gave an estradiol-binding fragment with molecular characteristics identical to the trypsin-modified cytoplasmic receptor. In addition, mild tryptic digestion of whole labeled nuclei allowed us to solubilize almost quantitatively the nuclear [3H]estradiol in a macromolecular bound form. The molecule thus obtained showed molecular parameters very similar to the 60000-dalton trypsin fragments obtained from high-salt cytoplasmic and nuclear extracts. These molecules were undistinguishable by gel electrophoresis analysis at six different acrylamide concentrations. These results in conjunction with those derived from dissociation kinetics experiments and ligand specificity studies indicate the cytosolic protein is a functional part of the nuclear receptor. Based upon these and other studies we suggest that proteolytic cleavage of the estradiol-receptor complex, which results in the removal of the estradiol-binding sites from the nuclear recognition sites of the molecule, could play a role in the inactivation of the estradiol receptor in vivo.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验