Desmazières Bernard, Buchmann William, Terrier Peran, Tortajada Jeanine
Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry-Val d'Essonne, CNRS UMR 8587, Bât. Maupertuis, Bd. F. Mitterrand, 91025 Evry Cedex, France.
Anal Chem. 2008 Feb 1;80(3):783-92. doi: 10.1021/ac0715367. Epub 2007 Dec 28.
The main advantage of the APCI interface for the LC-MS analysis of synthetic polymers resides in its compatibility with the main chromatographic modes: reversed-phase liquid chromatography, normal-phase liquid chromatography, and size exclusion chromatography in organic phase, with the usual flow rates. Moreover, APCI can be used in positive or negative modes. Representative applications are described to highlight benefits and limitations of the LC-APCI-MS technique with the analysis of industrial polymers up to molecular masses of 5 kDa: polyethers; polysiloxanes; and copolymers of siloxanes. Results are discussed in regard to those obtained by more classical techniques: SEC and MALDI-MS. The use of an APCI interface in LC-MS and SEC-MS coupling applied to synthetic polymers is efficient up to 2000-4500 Da. The main drawback of the APCI interface is the in-source decomposition that is observed above m/z = 2000-3000 and can induce an underestimation of average molecular weights. However, APCI allows detection on a wide range of polarity of sample/solvent and appears to be complementary to ESI.
对于合成聚合物的液相色谱-质谱联用(LC-MS)分析而言,大气压化学电离(APCI)接口的主要优势在于它能与主要的色谱模式兼容:反相液相色谱、正相液相色谱以及有机相中的尺寸排阻色谱,且流速通常也适用。此外,APCI可用于正离子或负离子模式。文中描述了一些典型应用,以突出LC-APCI-MS技术在分析分子量高达5 kDa的工业聚合物(如聚醚、聚硅氧烷以及硅氧烷共聚物)时的优点和局限性。同时,还将这些结果与通过更传统的技术(如尺寸排阻色谱(SEC)和基质辅助激光解吸电离质谱(MALDI-MS))所获得的结果进行了讨论。在LC-MS和SEC-MS联用中,将APCI接口应用于合成聚合物时,分子量在2000 - 4500 Da范围内效果良好。APCI接口的主要缺点是在m/z = 2000 - 3000以上会出现源内分解,这可能导致平均分子量被低估。然而,APCI能够检测多种极性的样品/溶剂,并且似乎与电喷雾电离(ESI)互为补充。