Chanmanee Wilaiwan, Watcharenwong Apichon, Chenthamarakshan C Ramannair, Kajitvichyanukul Puangrat, de Tacconi Norma R, Rajeshwar Krishnan
National Research Center for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok, Thailand.
J Am Chem Soc. 2008 Jan 23;130(3):965-74. doi: 10.1021/ja076092a. Epub 2007 Dec 29.
This paper describes TiO2 nanotube arrays prepared by anodic oxidation of Ti substrates using pulse voltage waveforms. Voltages were pulsed between 20 and -4 V or between 20 and 0 V with varying durations from 2 to 16 s at the lower limit of the pulse waveform. Ammonium fluoride or sodium fluoride (and mixtures of both) was used as the electrolyte with or without added medium modifier (glycerol, ethylene glycol, or poly (ethylene glycol) (PEG 400)) in these experiments. The pulse waveform was optimized to electrochemically grow TiO2 nanotubes and chemically etch their walls during its cathodic current flow regime. The resultant TiO2 nanotube arrays showed a higher quality of nanotube array morphology and photoresponse than samples grown via the conventional continuous anodization method. Films grown with a 20 V/-4 V pulse sequence and pulse duration of 2 s at its negative voltage limit afforded a superior photoresponse compared to other pulse durations. Specifically, the negative voltage limit of the pulse (-4 V) and its duration promote the adsorption of NH4+ species that in turn inhibits chemical attack of the growing oxide nanoarchitecture by the electrolyte F- species. The longer the period of the pulse at the negative voltage limit, the thicker the nanotube walls and the shorter the nanotube length. At variance, with 0 V as the low voltage limit, the longer the pulse duration, the thinner the oxide nanotube wall, suggesting that chemical attack by fluoride ions is not counterbalanced by NH3/NH4+ species adsorption, unlike the interfacial situation prevailing at -4 V. Finally, the results from this study provide useful evidence in support of existing mechanistic models for anodic growth and self-assembly of oxide nanotube arrays on the parent metal surface.
本文描述了通过使用脉冲电压波形对钛基底进行阳极氧化制备的二氧化钛纳米管阵列。电压在20 V和 -4 V之间或20 V和0 V之间脉冲变化,在脉冲波形的下限处,脉冲持续时间从2秒到16秒不等。在这些实验中,使用氟化铵或氟化钠(以及两者的混合物)作为电解质,添加或不添加介质改性剂(甘油、乙二醇或聚乙二醇(PEG 400))。对脉冲波形进行了优化,以便在其阴极电流流动阶段通过电化学方法生长二氧化钛纳米管并对其管壁进行化学蚀刻。与通过传统连续阳极氧化方法生长的样品相比,所得的二氧化钛纳米管阵列显示出更高质量的纳米管阵列形态和光响应。与其他脉冲持续时间相比,在20 V/-4 V脉冲序列且负电压极限处脉冲持续时间为2秒的条件下生长的薄膜具有优异的光响应。具体而言,脉冲的负电压极限(-4 V)及其持续时间促进了NH4+物种的吸附,这反过来又抑制了电解质F-物种对生长中的氧化物纳米结构的化学侵蚀。在负电压极限处脉冲持续的时间越长,纳米管壁越厚,纳米管长度越短。不同的是,以0 V作为低电压极限时,脉冲持续时间越长,氧化物纳米管壁越薄,这表明与 -4 V时的界面情况不同,氟离子的化学侵蚀没有被NH3/NH4+物种的吸附所抵消。最后,本研究的结果为支持氧化物纳米管阵列在母体金属表面阳极生长和自组装的现有机理模型提供了有用的证据。