Horvath Emily M, Tackett Lixuan, McCarthy Alicia M, Raman Priya, Brozinick Joseph T, Elmendorf Jeffrey S
Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202, USA.
Mol Endocrinol. 2008 Apr;22(4):937-50. doi: 10.1210/me.2007-0410. Epub 2007 Dec 28.
Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-beta-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly highlight the reversible nature of this abnormality.
此前,我们发现质膜(PM)磷脂酰肌醇4,5-二磷酸(PIP2)调节的丝状肌动蛋白(F-肌动蛋白)结构缺失会导致胰岛素诱导的胰岛素抵抗。有趣的是,我们还证明了吡啶甲酸铬(CrPic),一种被认为可改善胰岛素抵抗个体血糖状态的膳食补充剂,通过降低质膜胆固醇增强了胰岛素敏感的3T3-L1脂肪细胞中胰岛素调节的葡萄糖转运。在此,为了深入了解这些不同观察结果的机制,我们测试了如下预测:CrPic将通过改善对细胞骨架结构和胰岛素敏感性重要的质膜特征来预防胰岛素诱导的胰岛素抵抗。我们发现,胰岛素诱导的胰岛素抵抗脂肪细胞显示质膜胆固醇升高,同时质膜PIP2相应减少。CrPic的降胆固醇作用纠正了这种脂质失衡和胰岛素抵抗。质膜脂质失衡并未损害胰岛素信号传导,CrPic也未放大胰岛素信号转导。相反,质膜分析证实了胆固醇和PIP2相互作用对细胞骨架结构的影响。由于大量体外研究证明细胞骨架能力在胰岛素调节的葡萄糖转运中起重要作用,我们接下来评估了肥胖、胰岛素抵抗的Zucker(fa/fa)大鼠的完整骨骼肌。由于这些动物的胰岛素抵抗可能涉及多种机制,降胆固醇使F-肌动蛋白细胞骨架结构和胰岛素敏感性恢复到瘦对照肌肉水平的这一发现令人瞩目。此外,分别使用甲基-β-环糊精将胆固醇转运入或转运出膜的实验重现了胰岛素诱导的胰岛素抵抗以及CrPic对膜/细胞骨架相互作用和胰岛素敏感性的保护作用。这些数据预测了高胰岛素血症相关胰岛素抵抗的质膜胆固醇基础,并重要地突出了这种异常的可逆性。