Clark Jeffrey S, Vandorpe David H, Chernova Marina N, Heneghan John F, Stewart Andrew K, Alper Seth L
Molecular and Vascular Medicine Unit and Renal Division, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
J Physiol. 2008 Mar 1;586(5):1291-306. doi: 10.1113/jphysiol.2007.143222. Epub 2008 Jan 3.
The mouse is refractory to lithogenic agents active in rats and humans, and so has been traditionally considered a poor experimental model for nephrolithiasis. However, recent studies have identified slc26a6 as an oxalate nephrolithiasis gene in the mouse. Here we extend our earlier demonstration of different anion selectivities of the orthologous mouse and human SLC26A6 polypeptides to investigate the correlation between species-specific differences in SLC26A6 oxalate/anion exchange properties as expressed in Xenopus oocytes and in reported nephrolithiasis susceptibility. We find that human SLC26A6 mediates minimal rates of Cl(-) exchange for Cl(-), sulphate or formate, but rates of oxalate/Cl(-) exchange roughly equivalent to those of mouse slc2a6. Both transporters exhibit highly cooperative dependence of oxalate efflux rate on extracellular [Cl(-)], but whereas the K(1/2) for extracellular [Cl(-)] is only 8 mM for mouse slc26a6, that for human SLC26A6 is 62 mM. This latter value approximates the reported mean luminal [Cl(-)] of postprandial human jejunal chyme, and reflects contributions from both transmembrane and C-terminal cytoplasmic domains of human SLC26A6. Human SLC26A6 variant V185M exhibits altered [Cl(-)] dependence and reduced rates of oxalate/Cl(-) exchange. Whereas mouse slc26a6 mediates bidirectional electrogenic oxalate/Cl(-) exchange, human SLC26A6-mediated oxalate transport appears to be electroneutral. We hypothesize that the low extracellular Cl(-) affinity and apparent electroneutrality of oxalate efflux characterizing human SLC26A6 may partially explain the high human susceptibility to nephrolithiasis relative to that of mouse. SLC26A6 sequence variant(s) are candidate risk modifiers for nephrolithiasis.
小鼠对在大鼠和人类中具有活性的致石剂具有抗性,因此传统上被认为是肾结石病的不良实验模型。然而,最近的研究已将溶质载体家族26成员6(slc26a6)鉴定为小鼠草酸钙肾结石病相关基因。在此,我们扩展了之前关于直系同源小鼠和人类溶质载体家族26成员6(SLC26A6)多肽不同阴离子选择性的证明,以研究非洲爪蟾卵母细胞中表达的SLC26A6草酸/阴离子交换特性的物种特异性差异与报道的肾结石易感性之间的相关性。我们发现,人类SLC26A6介导的氯离子(Cl(-))与Cl(-)、硫酸根或甲酸根的交换速率极低,但草酸/Cl(-)交换速率与小鼠溶质载体家族26成员6(slc2a6)大致相当。两种转运蛋白都表现出草酸外流速率对细胞外[Cl(-)]的高度协同依赖性,但小鼠slc26a6对细胞外[Cl(-)]的半数最大效应浓度(K(1/2))仅为8 mM,而人类SLC26A6的该值为62 mM。后一数值接近报道的餐后人类空肠食糜的平均管腔[Cl(-)],并反映了人类SLC26A6跨膜结构域和C端胞质结构域的贡献。人类SLC26A6变体V185M表现出改变的[Cl(-)]依赖性和降低的草酸/Cl(-)交换速率。小鼠slc26a6介导双向电生性草酸/Cl(-)交换,而人类SLC26A6介导的草酸转运似乎是电中性的。我们推测,人类SLC26A6所特有的低细胞外Cl(-)亲和力和草酸外流的明显电中性可能部分解释了人类相对于小鼠对肾结石的高易感性。SLC26A6序列变体是肾结石病的候选风险修饰因子。