Suppr超能文献

牙科复合材料光聚合收缩应变模型。

A model for shrinkage strain in photo polymerization of dental composites.

作者信息

Petrovic Ljubomir M, Atanackovic Teodor M

机构信息

Clinic of Dentistry, Faculty of Medicine, University of Novi Sad, Serbia.

出版信息

Dent Mater. 2008 Apr;24(4):556-60. doi: 10.1016/j.dental.2007.11.015.

Abstract

OBJECTIVES

We formulate a new model for the shrinkage strain developed during photo polymerization in dental composites. The model is based on the diffusion type fractional order equation, since it has been proved that polymerization reaction is diffusion controlled (Atai M, Watts DC. A new kinetic model for the photo polymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006;22:785-91). Our model strongly confirms the observation by Atai and Watts (see reference details above) and their experimental results. The shrinkage strain is modeled by a nonlinear differential equation in (see reference details above) and that equation must be solved numerically. In our approach, we use the linear fractional order differential equation to describe the strain rate due to photo polymerization. This equation is solved exactly.

RESULTS

As shrinkage is a consequence of the polymerization reaction and polymerization reaction is diffusion controlled, we postulate that shrinkage strain rate is described by a diffusion type equation. We find explicit form of solution to this equation and determine the strain in the resin monomers. Also by using equations of linear viscoelasticity, we determine stresses in the polymer due to the shrinkage. The time evolution of stresses implies that the maximal stresses are developed at the very beginning of the polymerization process.

SIGNIFICANCE

The stress in a dental composite that is light treated has the largest value short time after the treatment starts. The strain settles at the constant value in the time of about 100s (for the cases treated in Atai and Watts). From the model developed here, the shrinkage strain of dental composites and resin monomers is analytically determined. The maximal value of stresses is important, since this value must be smaller than the adhesive bond strength at cavo-restoration interface. The maximum stress determined here depends on the diffusivity coefficient. Since diffusivity coefficient increases as polymerization proceeds, it follows that the periods of light treatments should be shorter at the beginning of the treatment and longer at the end of the treatment, with dark interval between the initial low intensity and following high intensity curing. This is because at the end of polymerization the stress relaxation cannot take place.

摘要

目的

我们为牙科复合材料光聚合过程中产生的收缩应变制定了一个新模型。该模型基于扩散型分数阶方程,因为已经证明聚合反应是由扩散控制的(阿泰 M,瓦茨 DC。牙科复合材料和树脂单体光聚合收缩应变的新动力学模型。《牙科材料》2006 年;22:785 - 91)。我们的模型有力地证实了阿泰与瓦茨的观察结果(见上文参考文献详情)及其实验结果。收缩应变由(见上文参考文献详情)中的一个非线性微分方程建模,该方程必须通过数值求解。在我们的方法中,我们使用线性分数阶微分方程来描述光聚合引起的应变率。这个方程可以精确求解。

结果

由于收缩是聚合反应的结果且聚合反应由扩散控制,我们假设收缩应变率由一个扩散型方程描述。我们找到了该方程的显式解形式,并确定了树脂单体中的应变。此外,通过使用线性粘弹性方程,我们确定了由于收缩在聚合物中产生的应力。应力随时间的演变表明最大应力在聚合过程刚开始时产生。

意义

经过光处理的牙科复合材料中的应力在处理开始后的短时间内具有最大值。应变在大约 100 秒的时间内稳定在恒定值(对于阿泰与瓦茨所处理的情况)。从这里开发的模型中,可以解析地确定牙科复合材料和树脂单体的收缩应变。最大应力值很重要,因为这个值必须小于窝洞修复界面处的粘结强度。这里确定的最大应力取决于扩散系数。由于扩散系数随着聚合的进行而增加,所以在处理开始时光处理时间应该较短,而在处理结束时应该较长,在初始低强度和随后的高强度固化之间要有暗间隔。这是因为在聚合结束时应力松弛无法发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验