Doan Thierry, Martin Laetitia, Zorrilla Silvia, Chaix Denis, Aymerich Stéphane, Labesse Gilles, Declerck Nathalie
Microbiologie et Génétique Moléculaire, INRA (UMR1238)-CNRS (UMR2585)-AgroParisTech, F-78850 Thiverval-Grignon, France.
Proteins. 2008 Jun;71(4):2038-50. doi: 10.1002/prot.21883.
CggR belongs to the SorC family of bacterial transcriptional regulators which control the expression of genes and operons involved in carbohydrate catabolism. CggR was first identified in Bacillus subtilis where it represses the gapA operon encoding the five enzymes that catalyze the central part of glycolysis. Here we present a structure/function study demonstrating that the C-terminal region of CggR regulates the DNA binding activity of this repressor in response to binding of a phosphorylated sugar. Molecular modeling of CggR revealed a winged-helix DNA-binding motif followed by a C-terminal domain presenting weak but significant homology with glucosamine-6-phosphate deaminases from the NagB family. In silico ligand screening suggested that the CggR C-terminal domain would bind preferentially bi-phosphorylated compounds, in agreement with previous studies that proposed fructuose-1,6-biphosphate (FBP) as the inducer metabolite. In vitro, FBP was the only sugar compound capable of interfering with CggR cooperative binding to DNA. FBP was also found to protect CggR against trypsin degradation at two arginine residues predicted to reside in a mobile loop forming the active site lid of the NagB enzymes. Replacement of residues predicted to interact with FBP led to mutant CggR with altered repressor activity in vivo but retaining their structural integrity and DNA binding activity in vitro. Interestingly, some of the mutant repressors responded with different specificity towards mono- and di-phospho-fructosides. Based on these results, we propose that the activity of the CggR-like repressors is controlled by a phospho-sugar binding (PSB) domain presenting structural and functional homology with NagB enzymes.
CggR属于细菌转录调节因子的SorC家族,该家族控制参与碳水化合物分解代谢的基因和操纵子的表达。CggR最初是在枯草芽孢杆菌中发现的,它在那里抑制gapA操纵子,该操纵子编码催化糖酵解中心部分的五种酶。在此,我们展示了一项结构/功能研究,证明CggR的C末端区域响应磷酸化糖的结合来调节这种阻遏物的DNA结合活性。CggR的分子模型显示出一个带翼螺旋DNA结合基序,其后是一个C末端结构域,该结构域与NagB家族的6-磷酸葡糖胺脱氨酶具有微弱但显著的同源性。计算机配体筛选表明,CggR C末端结构域将优先结合双磷酸化化合物,这与之前提出果糖-1,6-二磷酸(FBP)作为诱导代谢物的研究一致。在体外,FBP是唯一能够干扰CggR与DNA协同结合的糖类化合物。还发现FBP能保护CggR免受胰蛋白酶在两个精氨酸残基处的降解,这两个精氨酸残基预计位于形成NagB酶活性位点盖子的可移动环中。预测与FBP相互作用的残基的替换导致突变型CggR在体内具有改变的阻遏物活性,但在体外保留其结构完整性和DNA结合活性。有趣的是,一些突变型阻遏物对单磷酸和二磷酸果糖苷的反应具有不同的特异性。基于这些结果,我们提出,类CggR阻遏物的活性由一个与NagB酶具有结构和功能同源性的磷酸糖结合(PSB)结构域控制。