Schaeffer V, Patte-Mensah C, Eckert A, Mensah-Nyagan A G
Equipe Stéroïdes et Système Nociceptif, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université Louis Pasteur, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
Neuroscience. 2008 Feb 6;151(3):758-70. doi: 10.1016/j.neuroscience.2007.11.032. Epub 2007 Dec 3.
Neurosteroid biosynthesis is demonstrated in many species but key factors interacting with neurosteroidogenesis under pathophysiological conditions are unknown. Hydrogen peroxide (H(2)O(2))-induced oxidative stress is an etiological factor involved in several disorders. We hypothesized that, if neurosteroidogenesis is a pivotal mechanism for nerve cell protection or viability, it might be selectively regulated under oxidative stress condition. To check our hypothesis, we investigated H(2)O(2) effects on neurosteroidogenesis in human neuroblastoma SH-SY5Y cells. Pulse-chase, high performance liquid chromatography and flow-scintillation analyses showed that, along neurosteroidogenic pathways converting pregnenolone into various neurosteroids, only estradiol synthesis selectively decreased in SH-SY5Y cells after H(2)O(2)-treatment. Testosterone conversion into estradiol was also inhibited by H(2)O(2). Real-time reverse transcription-polymerase chain reaction revealed aromatase gene repression in SH-SY5Y cells 12 h after the oxidative stress onset. Consistently, viability assays showed that chronic inhibition of aromatase activity by letrozole killed neuroblastoma cells. A 12-h pretreatment of SH-SY5Y cells with estradiol was protective against H(2)O(2)-induced death. In addition, estradiol was also capable of rescuing markedly neuroblastoma cells from letrozole-evoked death. Altogether, these results suggest that endogenous estradiol formation is pivotal for SH-SY5Y cell viability. Serum deprivation-evoked stress, which also killed SH-SY5Y cells, unaffected neurosteroidogenesis, indicating that inhibitory effect on neuroprotective-neurosteroid estradiol biosynthesis is specific for H(2)O(2)-induced stress. Selective targeting of neurosteroidogenic pathways may therefore constitute an interesting strategy against H(2)O(2)-evoked neurodegenerative processes.
许多物种都存在神经甾体生物合成现象,但在病理生理条件下与神经甾体生成相互作用的关键因素尚不清楚。过氧化氢(H₂O₂)诱导的氧化应激是多种疾病的一个病因。我们推测,如果神经甾体生成是神经细胞保护或存活的关键机制,那么在氧化应激条件下它可能会受到选择性调节。为了验证我们的假设,我们研究了H₂O₂对人神经母细胞瘤SH - SY5Y细胞中神经甾体生成的影响。脉冲追踪、高效液相色谱和流动闪烁分析表明,在将孕烯醇酮转化为各种神经甾体的神经甾体生成途径中,H₂O₂处理后的SH - SY5Y细胞中只有雌二醇的合成选择性降低。睾酮向雌二醇的转化也受到H₂O₂的抑制。实时逆转录 - 聚合酶链反应显示,氧化应激开始12小时后,SH - SY5Y细胞中的芳香化酶基因受到抑制。一致地,活力测定表明,来曲唑对芳香化酶活性的慢性抑制会杀死神经母细胞瘤细胞。用雌二醇对SH - SY5Y细胞进行12小时的预处理可保护细胞免受H₂O₂诱导的死亡。此外,雌二醇还能够显著挽救神经母细胞瘤细胞免于来曲唑引起的死亡。总之,这些结果表明内源性雌二醇的形成对SH - SY5Y细胞的存活至关重要。血清剥夺引起的应激也会杀死SH - SY5Y细胞,但不影响神经甾体生成,这表明对神经保护神经甾体雌二醇生物合成的抑制作用是H₂O₂诱导应激所特有的。因此,选择性靶向神经甾体生成途径可能构成一种针对H₂O₂诱发的神经退行性过程的有趣策略。