Alfaro Javier A, Zheng Ruixiang Blake, Persson Mattias, Letts James A, Polakowski Robert, Bai Yu, Borisova Svetlana N, Seto Nina O L, Lowary Todd L, Palcic Monica M, Evans Stephen V
Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
J Biol Chem. 2008 Apr 11;283(15):10097-108. doi: 10.1074/jbc.M708669200. Epub 2008 Jan 11.
The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and an alpha-(1-->3)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/G235S bound to a panel of donor and acceptor analog substrates reveal "open," "semi-closed," and "closed" conformations as the enzymes go from the unliganded to the liganded states. In the open form the internal polypeptide loop (amino acid residues 177-195) adjacent to the active site in the unliganded or H antigen-bound enzymes is composed of two alpha-helices spanning Arg(180)-Met(186) and Arg(188)-Asp(194), respectively. The semi-closed and closed forms of the enzymes are generated by binding of UDP or of UDP and H antigen analogs, respectively, and show that these helices merge to form a single distorted helical structure with alternating alpha-3(10)-alpha character that partially occludes the active site. The closed form is distinguished from the semi-closed form by the ordering of the final nine C-terminal residues through the formation of hydrogen bonds to both UDP and H antigen analogs. The semi-closed forms for various mutants generally show significantly more disorder than the open forms, whereas the closed forms display little or no disorder depending strongly on the identity of residue 176. Finally, the use of synthetic analogs reveals how H antigen acceptor binding can be critical in stabilizing the closed conformation. These structures demonstrate a delicately balanced substrate recognition mechanism and give insight on critical aspects of donor and acceptor specificity, on the order of substrate binding, and on the requirements for catalysis.
ABO(H)血型A和B抗原的酶促合成的最后一步由两种密切相关的糖基转移酶催化,即α-(1→3)-N-乙酰半乳糖胺基转移酶(GTA)和α-(1→3)-半乳糖基转移酶(GTB)。在它们的354个氨基酸残基中,GTA和GTB仅在四个“关键”残基上有所不同。与一组供体和受体类似底物结合的GTB以及GTA/GTB嵌合酶GTB/G176R和GTB/G176R/G235S的高分辨率结构显示,随着酶从未结合配体状态转变为结合配体状态,会呈现出“开放”“半封闭”和“封闭”构象。在开放形式中,未结合配体或结合H抗原的酶中与活性位点相邻的内部多肽环(氨基酸残基177 - 195)分别由跨越Arg(180)-Met(186)和Arg(188)-Asp(194)的两个α-螺旋组成。酶的半封闭和封闭形式分别由UDP或UDP与H抗原类似物的结合产生,表明这些螺旋合并形成单个扭曲的螺旋结构,具有交替的α-3(10)-α特征,部分封闭了活性位点。封闭形式与半封闭形式的区别在于,通过与UDP和H抗原类似物形成氢键,使最后九个C末端残基有序排列。各种突变体的半封闭形式通常比开放形式表现出明显更多的无序,而封闭形式根据残基176的身份显示出很少或没有无序。最后,合成类似物的使用揭示了H抗原受体结合在稳定封闭构象中如何至关重要。这些结构展示了一种微妙平衡的底物识别机制,并深入了解了供体和受体特异性的关键方面、底物结合的顺序以及催化的要求。