Hoye Adam T, Davoren Jennifer E, Wipf Peter, Fink Mitchell P, Kagan Valerian E
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Acc Chem Res. 2008 Jan;41(1):87-97. doi: 10.1021/ar700135m.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are closely linked to degenerative diseases such as Alzheimer's disease, Parkinson's, neuronal death including ischemic and hemorrhagic stroke, acute and chronic degenerative cardiac myocyte death, and cancer. As a byproduct of oxidative phosphorylation, a steady stream of reactive species emerge from our cellular energy plants, the mitochondria. ROS and RNS potentially cause damage to all cellular components. Structure alteration, biomolecule fragmentation, and oxidation of side chains are trade-offs of cellular energy production. ROS and RNS escape results in the activation of cytosolic stress pathways, DNA damage, and the upregulation of JNK, p38, and p53. Incomplete scavenging of ROS and RNS particularly affects the mitochondrial lipid cardiolipin (CL), triggers the release of mitochondrial cytochrome c, and activates the intrinsic death pathway. Due to the active redox environment and the excess of NADH and ATP at the inner mitochondrial membrane, a broad range of agents including electron acceptors, electron donors, and hydride acceptors can be used to influence the biochemical pathways. The key to therapeutic value is to enrich selective redox modulators at the target sites. Our approach is based on conjugating nitroxides to segments of natural products with relatively high affinity for mitochondrial membranes. For example, a modified gramicidin S segment was successfully used for this purpose and proven to be effective in preventing superoxide production in cells and CL oxidation in mitochondria and in protecting cells against a range of pro-apoptotic triggers such as actinomycin D, radiation, and staurosporine. More importantly, these mitochondria-targeted nitroxide/gramicidin conjugates were able to protect against apoptosis in vivo by preventing CL oxidation induced by intestinal hemorrhagic shock. Optimization of nitroxide carriers could lead to a new generation of effective antiapoptotic agents acting at an early mitochondrial stage. Alternative chemistry-based approaches to targeting mitochondria include the use of proteins and peptides, as well as the attachment of payloads to lipophilic cationic compounds, sulfonylureas, anthracyclines, and other agents with proven or hypothetical affinities for mitochondria. Manganese superoxide dismutase (MnSOD), SS tetrapeptides with 2',6'-dimethyltyrosine (Dmt) residues, rhodamine, triphenylphosphonium salts, nonopioid analgesics, adriamycin, and diverse electron-rich aromatics and stilbenes were used to influence mitochondrial biochemistry and the biology of aging. Some general structural principles for effective therapeutic agents are now emerging. Among these are the presence of basic or positively charged functional groups, hydrophobic substructures, and, most promising for future selective strategies, classes of compounds that are actively shuttled into mitochondria, bind to mitochondria-specific proteins, or show preferential affinity to mitochondria-specific lipids.
活性氧(ROS)和活性氮(RNS)与诸如阿尔茨海默病、帕金森病、包括缺血性和出血性中风在内的神经元死亡、急慢性退行性心肌细胞死亡以及癌症等退行性疾病密切相关。作为氧化磷酸化的副产物,源源不断的活性物质从我们细胞的能量工厂——线粒体中产生。ROS和RNS可能会对所有细胞成分造成损害。结构改变、生物分子碎片化以及侧链氧化是细胞能量产生的代价。ROS和RNS泄漏会导致胞质应激途径激活、DNA损伤以及JNK、p38和p53上调。ROS和RNS清除不完全尤其会影响线粒体脂质心磷脂(CL),触发线粒体细胞色素c释放,并激活内源性死亡途径。由于线粒体内膜存在活跃的氧化还原环境以及过量的NADH和ATP,包括电子受体、电子供体和氢化物受体在内的多种试剂可用于影响生化途径。治疗价值的关键在于在靶位点富集选择性氧化还原调节剂。我们的方法是将氮氧化物与对线粒体膜具有相对较高亲和力的天然产物片段偶联。例如,一种修饰的短杆菌肽S片段已成功用于此目的,并被证明在防止细胞中超氧化物产生、线粒体中CL氧化以及保护细胞免受一系列促凋亡触发因素(如放线菌素D、辐射和星形孢菌素)的影响方面有效。更重要的是,这些靶向线粒体的氮氧化物/短杆菌肽偶联物能够通过防止肠出血性休克诱导的CL氧化在体内预防细胞凋亡。氮氧化物载体的优化可能会导致新一代在早期线粒体阶段起作用的有效抗凋亡药物的出现。基于化学的靶向线粒体的替代方法包括使用蛋白质和肽,以及将有效载荷连接到亲脂性阳离子化合物、磺酰脲类、蒽环类药物以及其他对线粒体具有已证实或假设亲和力的试剂上。锰超氧化物歧化酶(MnSOD)、带有2',6'-二甲基酪氨酸(Dmt)残基的SS四肽、罗丹明、三苯基鏻盐、非阿片类镇痛药、阿霉素以及各种富电子芳烃和芪类化合物被用于影响线粒体生物化学和衰老生物学。现在正在出现一些有效治疗药物的一般结构原则。其中包括存在碱性或带正电荷的官能团、疏水亚结构,以及对于未来选择性策略最有前景的一类化合物,即能够主动穿梭进入线粒体、与线粒体特异性蛋白质结合或对线粒体特异性脂质表现出优先亲和力的化合物。