Felinger Attila
Department of Analytical and Environmental Chemistry, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary.
J Chromatogr A. 2008 Mar 14;1184(1-2):20-41. doi: 10.1016/j.chroma.2007.12.066. Epub 2008 Jan 3.
The molecular dynamic model of chromatography is a microscopic model that consists of two fundamental processes: (i) the random migration of the molecules in the mobile phase, and (ii) the random adsorption-desorption of molecules on the stationary phase. The diffusion and drift of the molecules in the mobile phase is usually described with a simple one-dimensional random walk. The adsorption-desorption process is modeled most of the time by a Poisson process that assumes exponential sojourn times of the molecules in both the mobile and the stationary phases. The molecular dynamic model of chromatography can simply be used to characterize the chromatographic process on heterogeneous stationary phases. It has been applied to reversed phase, chiral, size-exclusion, and ion-exchange separations.
色谱的分子动力学模型是一个微观模型,它由两个基本过程组成:(i)分子在流动相中的随机迁移,以及(ii)分子在固定相上的随机吸附 - 解吸。流动相中分子的扩散和漂移通常用简单的一维随机游走描述。吸附 - 解吸过程大多时候通过泊松过程建模,该过程假定分子在流动相和固定相中的停留时间呈指数分布。色谱的分子动力学模型可简单用于表征非均相固定相上的色谱过程。它已应用于反相、手性、尺寸排阻和离子交换分离。