Suppr超能文献

阳离子扩散促进因子Cis4通过调节裂殖酵母中的锌稳态参与高尔基体膜运输。

Cation diffusion facilitator Cis4 is implicated in Golgi membrane trafficking via regulating zinc homeostasis in fission yeast.

作者信息

Fang Yue, Sugiura Reiko, Ma Yan, Yada-Matsushima Tomoko, Umeno Hirotatsu, Kuno Takayoshi

机构信息

Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.

出版信息

Mol Biol Cell. 2008 Apr;19(4):1295-303. doi: 10.1091/mbc.e07-08-0805. Epub 2008 Jan 16.

Abstract

We screened for mutations that confer sensitivities to the calcineurin inhibitor FK506 and to a high concentration of MgCl(2) and isolated the cis4-1 mutant, an allele of the gene encoding a cation diffusion facilitator (CDF) protein that is structurally related to zinc transporters. Consistently, the addition of extracellular Zn(2+) suppressed the phenotypes of the cis4 mutant cells. The cis4 mutants and the mutant cells of another CDF-encoding gene SPBC16E9.14c (we named zrg17(+)) shared common and nonadditive zinc-suppressible phenotypes, and Cis4 and Zrg17 physically interacted. Cis4 localized at the cis-Golgi, suggesting that Cis4 is responsible for Zn(2+) uptake to the cis-Golgi. The cis4 mutant cells showed phenotypes such as weak cell wall and decreased acid phosphatase secretion that are thought to be resulting from impaired membrane trafficking. In addition, the cis4 deletion cells showed synthetic growth defects with all the four membrane-trafficking mutants tested, namely ypt3-i5, ryh1-i6, gdi1-i11, and apm1-1. Interestingly, the addition of extracellular Zn(2+) significantly suppressed the phenotypes of the ypt3-i5 and apm1-1 mutant cells. These results suggest that Cis4 forms a heteromeric functional complex with Zrg17 and that Cis4 is implicated in Golgi membrane trafficking through the regulation of zinc homeostasis in fission yeast.

摘要

我们筛选了对钙调神经磷酸酶抑制剂FK506和高浓度MgCl₂敏感的突变体,并分离出cis4-1突变体,它是编码一种阳离子扩散促进因子(CDF)蛋白的基因的一个等位基因,该蛋白在结构上与锌转运体相关。一致的是,添加细胞外Zn²⁺可抑制cis4突变体细胞的表型。cis4突变体和另一个编码CDF的基因SPBC16E9.14c(我们命名为zrg17⁺)的突变体细胞具有共同的且非累加的锌可抑制表型,并且Cis4和Zrg17发生物理相互作用。Cis4定位于顺面高尔基体,表明Cis4负责将Zn²⁺摄取到顺面高尔基体。cis4突变体细胞表现出诸如细胞壁薄弱和酸性磷酸酶分泌减少等表型,这些表型被认为是由膜运输受损导致的。此外,cis4缺失细胞与所测试的所有四个膜运输突变体,即ypt3-i5、ryh1-i6、gdi1-i11和apm1-1,都表现出合成生长缺陷。有趣的是,添加细胞外Zn²⁺可显著抑制ypt3-i5和apm1-1突变体细胞的表型。这些结果表明,Cis4与Zrg17形成异源功能复合物,并且Cis4通过调节裂殖酵母中的锌稳态参与高尔基体膜运输。

相似文献

1
Cation diffusion facilitator Cis4 is implicated in Golgi membrane trafficking via regulating zinc homeostasis in fission yeast.
Mol Biol Cell. 2008 Apr;19(4):1295-303. doi: 10.1091/mbc.e07-08-0805. Epub 2008 Jan 16.
3
Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol.
PLoS Genet. 2018 Mar 12;14(3):e1007262. doi: 10.1371/journal.pgen.1007262. eCollection 2018 Mar.
6
Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast.
Biochem Biophys Res Commun. 2015 Feb 13;457(3):273-9. doi: 10.1016/j.bbrc.2014.12.100. Epub 2015 Jan 9.
7
Sip1, a conserved AP-1 accessory protein, is important for Golgi/endosome trafficking in fission yeast.
PLoS One. 2012;7(9):e45324. doi: 10.1371/journal.pone.0045324. Epub 2012 Sep 17.
9
Valproic acid affects membrane trafficking and cell-wall integrity in fission yeast.
Genetics. 2007 Apr;175(4):1695-705. doi: 10.1534/genetics.107.070946. Epub 2007 Feb 7.

引用本文的文献

1
is a highly mycorrhiza-induced zinc transporter from in association with pine.
Front Plant Sci. 2024 Aug 22;15:1466279. doi: 10.3389/fpls.2024.1466279. eCollection 2024.
2
Identification and characterization of a novel antifungal compound tubeimoside I targeting cell wall.
Microbiol Spectr. 2024 Jun 4;12(6):e0404723. doi: 10.1128/spectrum.04047-23. Epub 2024 Apr 23.
3
Metalation and activation of Zn enzymes via early secretory pathway-resident ZNT proteins.
Biophys Rev (Melville). 2023 Dec 8;4(4):041302. doi: 10.1063/5.0176048. eCollection 2023 Dec.
4
Zinc homeostasis in Schizosaccharomyces pombe.
Arch Microbiol. 2023 Mar 21;205(4):126. doi: 10.1007/s00203-023-03473-4.
5
Phosphoinositide-Dependent Protein Kinases Regulate Cell Cycle Progression Through the SAD Kinase Cdr2 in Fission Yeast.
Front Microbiol. 2022 Jan 10;12:807148. doi: 10.3389/fmicb.2021.807148. eCollection 2021.
6
Zinc transporters and their functional integration in mammalian cells.
J Biol Chem. 2021 Jan-Jun;296:100320. doi: 10.1016/j.jbc.2021.100320. Epub 2021 Jan 22.
7
Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).
Mol Microbiol. 2021 Apr;115(4):623-642. doi: 10.1111/mmi.14627. Epub 2020 Nov 3.
9
Transcription factors and transporters in zinc homeostasis: lessons learned from fungi.
Crit Rev Biochem Mol Biol. 2020 Feb;55(1):88-110. doi: 10.1080/10409238.2020.1742092. Epub 2020 Mar 19.
10
Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation.
J Biol Chem. 2020 Apr 24;295(17):5669-5684. doi: 10.1074/jbc.RA120.012610. Epub 2020 Mar 16.

本文引用的文献

1
Wobble inosine tRNA modification is essential to cell cycle progression in G(1)/S and G(2)/M transitions in fission yeast.
J Biol Chem. 2007 Nov 16;282(46):33459-33465. doi: 10.1074/jbc.M706869200. Epub 2007 Sep 17.
2
Six new amino acid-auxotrophic markers for targeted gene integration and disruption in fission yeast.
Curr Genet. 2007 Aug;52(2):97-105. doi: 10.1007/s00294-007-0142-1. Epub 2007 Jul 11.
3
Genetic evidence for phospholipid-mediated regulation of the Rab GDP-dissociation inhibitor in fission yeast.
Genetics. 2006 Nov;174(3):1259-71. doi: 10.1534/genetics.106.064709. Epub 2006 Sep 15.
4
Mammalian zinc transport, trafficking, and signals.
J Biol Chem. 2006 Aug 25;281(34):24085-9. doi: 10.1074/jbc.R600011200. Epub 2006 Jun 22.
5
YKE4 (YIL023C) encodes a bidirectional zinc transporter in the endoplasmic reticulum of Saccharomyces cerevisiae.
J Biol Chem. 2006 Aug 11;281(32):22566-74. doi: 10.1074/jbc.M604730200. Epub 2006 Jun 7.
6
Sequence similarity and functional relationship among eukaryotic ZIP and CDF transporters.
Genomics Proteomics Bioinformatics. 2006 Feb;4(1):1-9. doi: 10.1016/S1672-0229(06)60010-7.
7
Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells.
J Biol Chem. 2006 Jun 30;281(26):17743-50. doi: 10.1074/jbc.M602470200. Epub 2006 Apr 24.
10
Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells.
J Biol Chem. 2005 Aug 5;280(31):28811-8. doi: 10.1074/jbc.M505500200. Epub 2005 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验