Suppr超能文献

加利福尼亚湾海洋泉古菌进行氨氧化的分子和生物地球化学证据。

Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California.

作者信息

Beman J Michael, Popp Brian N, Francis Christopher A

机构信息

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA, USA.

出版信息

ISME J. 2008 Apr;2(4):429-41. doi: 10.1038/ismej.2007.118. Epub 2008 Jan 17.

Abstract

Nitrification plays an important role in marine biogeochemistry, yet efforts to link this process to the microorganisms that mediate it are surprisingly limited. In particular, ammonia oxidation is the first and rate-limiting step of nitrification, yet ammonia oxidation rates and the abundance of ammonia-oxidizing bacteria (AOB) have rarely been measured in tandem. Ammonia oxidation rates have not been directly quantified in conjunction with ammonia-oxidizing archaea (AOA), although mounting evidence indicates that marine Crenarchaeota are capable of ammonia oxidation, and they are among the most abundant microbial groups in the ocean. Here, we have directly quantified ammonia oxidation rates by 15N labeling, and AOA and AOB abundances by quantitative PCR analysis of ammonia monooxygenase subunit A (amoA) genes, in the Gulf of California. Based on markedly different archaeal amoA sequence types in the upper water column (60 m) and oxygen minimum zone (OMZ; 450 m), novel amoA PCR primers were designed to specifically target and quantify 'shallow' (group A) and 'deep' (group B) clades. These primers recovered extensive variability with depth. Within the OMZ, AOA were most abundant where nitrification may be coupled to denitrification. In the upper water column, group A tracked variations in nitrogen biogeochemistry with depth and between basins, whereas AOB were present in relatively low numbers or undetectable. Overall, 15NH4+ oxidation rates were remarkably well correlated with AOA group A amoA gene copies (r2=0.90, P<0.001), and with 16S rRNA gene copies from marine Crenarchaeota (r2=0.85, P<0.005). These findings represent compelling evidence for an archaeal role in oceanic nitrification.

摘要

硝化作用在海洋生物地球化学中起着重要作用,然而,将这一过程与介导它的微生物联系起来的研究却极为有限。特别是,氨氧化是硝化作用的第一步且是限速步骤,但氨氧化速率和氨氧化细菌(AOB)的丰度很少同时进行测定。尽管越来越多的证据表明海洋泉古菌能够进行氨氧化,且它们是海洋中最丰富的微生物类群之一,但氨氧化速率尚未与氨氧化古菌(AOA)一起直接进行定量测定。在这里,我们通过15N标记直接定量了加利福尼亚湾的氨氧化速率,并通过对氨单加氧酶亚基A(amoA)基因的定量PCR分析测定了AOA和AOB的丰度。基于上层水柱(60米)和氧含量最小值区(OMZ;450米)中明显不同的古菌amoA序列类型,设计了新的amoA PCR引物,以特异性靶向和定量“浅层”(A组)和“深层”(B组)进化枝。这些引物揭示了随深度变化的广泛变异性。在OMZ内,AOA在硝化作用可能与反硝化作用耦合的地方最为丰富。在上层水柱中,A组随深度以及不同海盆之间的氮生物地球化学变化而变化,而AOB数量相对较少或无法检测到。总体而言,15NH4+氧化速率与AOA A组amoA基因拷贝数显著相关(r2 = 0.90,P < 0.001),与海洋泉古菌的16S rRNA基因拷贝数也显著相关(r2 = 0.85,P < 0.005)。这些发现为古菌在海洋硝化作用中的作用提供了有力证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验