Suppr超能文献

通过自动纳米接枝实现正构烷硫醇自组装单分子层书写图案的精度和可重复性。

Achieving precision and reproducibility for writing patterns of n-alkanethiol self-assembled monolayers with automated nanografting.

作者信息

Ngunjiri Johnpeter N, Kelley Algernon T, LeJeune Zorabel M, Li Jie-Ren, Lewandowski Brian R, Serem Wilson K, Daniels Stephanie L, Lusker Kathie L, Garno Jayne C

机构信息

Department of Chemistry and the Center for Biomodular Multiscale Systems, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA.

出版信息

Scanning. 2008 Mar-Apr;30(2):123-36. doi: 10.1002/sca.20083.

Abstract

Nanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force- induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons. To achieve high-resolution writing at the nanoscale, the writing speed, direction, and applied force need to be optimized. There are strategies for programing the tip translation, which will improve the uniformity, alignment, and geometries of nanopatterns written using open-loop feedback control. This article addresses the mechanics of automated nanografting and demonstrates results for various writing strategies when nanografting patterns of n-alkanethiol SAMs.

摘要

纳米压印是扫描探针光刻的一种高精度方法,它为快速写入硫醇自组装单分子层(SAMs)的纳米图案阵列提供了独特的优势和能力。纳米压印是通过力诱导基质SAM分子的位移来完成的,随后溶液中的正烷硫醇墨水分子立即进行自组装。用于控制原子力显微镜针尖位置和位移的反馈回路能够精确控制施加到表面的力,范围从皮牛到纳牛。为了在纳米尺度上实现高分辨率写入,需要优化写入速度、方向和施加的力。存在用于编程针尖平移的策略,这将提高使用开环反馈控制写入的纳米图案的均匀性、对齐度和几何形状。本文探讨了自动纳米压印的力学原理,并展示了在对正烷硫醇SAMs进行纳米压印图案时各种写入策略的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验