Suppr超能文献

酿酒酵母中FLO11调控新激活机制的鉴定

Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae.

作者信息

Barrales Ramón R, Jimenez Juan, Ibeas José I

机构信息

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain.

出版信息

Genetics. 2008 Jan;178(1):145-56. doi: 10.1534/genetics.107.081315.

Abstract

Adhesins play a central role in the cellular response of eukaryotic microorganisms to their host environment. In pathogens such as Candida spp. and other fungi, adhesins are responsible for adherence to mammalian tissues, and in Saccharomyces spp. yeasts also confer adherence to solid surfaces and to other yeast cells. The analysis of FLO11, the main adhesin identified in Saccharomyces cerevisiae, has revealed complex mechanisms, involving both genetic and epigenetic regulation, governing the expression of this critical gene. We designed a genomewide screen to identify new regulators of this pivotal adhesin in budding yeasts. We took advantage of a specific FLO11 allele that confers very high levels of FLO11 expression to wild "flor" strains of S. cerevisiae. We screened for mutants that abrogated the increased FLO11 expression of this allele using the loss of the characteristic fluffy-colony phenotype and a reporter plasmid containing GFP controlled by the same FLO11 promoter. Using this approach, we isolated several genes whose function was essential to maintain the expression of FLO11. In addition to previously characterized activators, we identified a number of novel FLO11 activators, which reveal the pH response pathway and chromatin-remodeling complexes as central elements involved in FLO11 activation.

摘要

黏附素在真核微生物对宿主环境的细胞反应中起着核心作用。在诸如念珠菌属等病原体及其他真菌中,黏附素负责与哺乳动物组织的黏附,而在酿酒酵母属酵母中,黏附素还赋予酵母细胞对固体表面及其他酵母细胞的黏附能力。对酿酒酵母中鉴定出的主要黏附素FLO11的分析揭示了复杂的机制,涉及遗传和表观遗传调控,这些调控决定着这个关键基因的表达。我们设计了一项全基因组筛选,以鉴定出芽殖酵母中这种关键黏附素的新调控因子。我们利用了一种特定的FLO11等位基因,该等位基因能使酿酒酵母野生型“flor”菌株中FLO11的表达水平非常高。我们使用失去特征性蓬松菌落表型以及一个由相同FLO11启动子控制的含有绿色荧光蛋白(GFP)的报告质粒,筛选出能消除该等位基因FLO11表达增加的突变体。通过这种方法,我们分离出了几个对维持FLO11表达至关重要的基因。除了先前已鉴定的激活因子外,我们还鉴定出了许多新的FLO11激活因子,这些激活因子揭示了pH反应途径和染色质重塑复合物是参与FLO11激活的核心要素。

相似文献

1
Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae.
Genetics. 2008 Jan;178(1):145-56. doi: 10.1534/genetics.107.081315.
2
Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes.
Genetics. 2012 Jul;191(3):791-803. doi: 10.1534/genetics.112.140301. Epub 2012 Apr 27.
3
Coding repeat instability in the FLO11 gene of Saccharomyces yeasts.
Yeast. 2008 Dec;25(12):879-89. doi: 10.1002/yea.1642.
5
FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae.
Microbiology (Reading). 2009 Dec;155(Pt 12):3838-3846. doi: 10.1099/mic.0.028738-0. Epub 2009 Sep 3.
8
Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae.
FEMS Yeast Res. 2008 Mar;8(2):225-36. doi: 10.1111/j.1567-1364.2007.00331.x. Epub 2007 Nov 12.
9
FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae.
FEMS Microbiol Lett. 2004 Aug 15;237(2):425-30. doi: 10.1016/j.femsle.2004.07.012.

引用本文的文献

2
Fungal biofilm formation and its regulatory mechanism.
Heliyon. 2024 Jun 12;10(12):e32766. doi: 10.1016/j.heliyon.2024.e32766. eCollection 2024 Jun 30.
3
Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity.
PLoS Genet. 2022 Jan 4;18(1):e1009988. doi: 10.1371/journal.pgen.1009988. eCollection 2022 Jan.
4
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast .
Pathogens. 2021 Nov 19;10(11):1509. doi: 10.3390/pathogens10111509.
5
Possible Role for Allelic Variation in Yeast in Ecological Adaptation.
Front Microbiol. 2021 Oct 18;12:741572. doi: 10.3389/fmicb.2021.741572. eCollection 2021.
7
Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis.
Microorganisms. 2020 May 26;8(6):803. doi: 10.3390/microorganisms8060803.
8
Multicellular group formation in Saccharomyces cerevisiae.
Proc Biol Sci. 2019 Sep 11;286(1910):20191098. doi: 10.1098/rspb.2019.1098. Epub 2019 Sep 4.
9
Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast.
Genetics. 2019 Jul;212(3):667-690. doi: 10.1534/genetics.119.302004. Epub 2019 May 3.
10
Layers of Cryptic Genetic Variation Underlie a Yeast Complex Trait.
Genetics. 2019 Apr;211(4):1469-1482. doi: 10.1534/genetics.119.301907. Epub 2019 Feb 20.

本文引用的文献

1
Adaptive evolution by mutations in the FLO11 gene.
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11228-33. doi: 10.1073/pnas.0601713103. Epub 2006 Jul 14.
2
Flocculation, adhesion and biofilm formation in yeasts.
Mol Microbiol. 2006 Apr;60(1):5-15. doi: 10.1111/j.1365-2958.2006.05072.x.
4
Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex.
Biochim Biophys Acta. 2005 Nov 10;1731(2):77-87; discussion 75-6. doi: 10.1016/j.bbaexp.2005.09.005. Epub 2005 Oct 24.
6
Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae.
FEMS Yeast Res. 2005 Dec;5(12):1151-6. doi: 10.1016/j.femsyr.2005.05.004. Epub 2005 Jul 1.
7
The yeast Mediator complex and its regulation.
Trends Biochem Sci. 2005 May;30(5):240-4. doi: 10.1016/j.tibs.2005.03.008.
8
Proteomic and genomic characterization of chromatin complexes at a boundary.
J Cell Biol. 2005 Apr 11;169(1):35-47. doi: 10.1083/jcb.200502104.
9
Do protein motifs read the histone code?
Bioessays. 2005 Feb;27(2):164-75. doi: 10.1002/bies.20176.
10
Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression.
Mol Cell Biol. 2004 Nov;24(21):9542-56. doi: 10.1128/MCB.24.21.9542-9556.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验