Suppr超能文献

封闭纳米狭缝中流体密度分布的二维对称性破缺

Two-dimensional symmetry breaking of fluid density distribution in closed nanoslits.

作者信息

Berim Gersh O, Ruckenstein Eli

机构信息

Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA.

出版信息

J Chem Phys. 2008 Jan 14;128(2):024704. doi: 10.1063/1.2816574.

Abstract

Stable and metastable fluid density distributions (FDDs) in a closed nanoslit between two identical parallel solid walls have been identified on the basis of a nonlocal canonical ensemble density functional theory. Similar to Monte Carlo simulations, periodicity of the FDD in one of the lateral (parallel to the walls surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered uniform. It was found that depending on the average fluid density in the slit, both uniform as well as nonuniform FDDs in the x direction can occur. The uniform FDDs are either symmetric or asymmetric about the middle plane between walls; the latter FDD being the consequence of a symmetry breaking across the slit. The nonuniform FDDs in the x direction occur either in the form of a bump on a thin liquid film covering the walls or as a liquid bridge between those walls and provide symmetry breaking in the x direction. For small and large average densities, the stable state is uniform in the x direction and is symmetric about the middle plane between walls. In the intermediate range of the average density and depending on the length L(x) of the FDD period, the stable state can be represented either by a FDD, which is uniform in the x direction and asymmetric about the middle of the slit (small values of L(x)), or by a bump- and bridgelike FDD for intermediate and large values of L(x), respectively. These results are in agreement with the Monte Carlo simulations performed earlier by other authors. Because the free energy of the stable state decreases monotonically with increasing L(x), one can conclude that the real period is very large (infinite) and that for the values of the parameters employed, a single bridge of finite length over the entire slit is generated.

摘要

基于非局部正则系综密度泛函理论,已确定了两个相同平行固体壁之间封闭纳米狭缝中的稳定和亚稳流体密度分布(FDDs)。与蒙特卡罗模拟类似,假定FDD在一个横向(平行于壁面)方向(记为x方向)上具有周期性。在另一个横向方向y上,FDD被认为是均匀的。结果发现,根据狭缝中的平均流体密度,x方向上既可能出现均匀的FDD,也可能出现非均匀的FDD。均匀的FDDs关于壁之间的中间平面要么是对称的,要么是不对称的;后者是狭缝中对称性破缺的结果。x方向上的非均匀FDDs要么以覆盖壁的薄液膜上的凸起形式出现,要么以壁之间的液桥形式出现,并在x方向上提供对称性破缺。对于小平均密度和大平均密度,稳定态在x方向上是均匀的,并且关于壁之间的中间平面是对称的。在平均密度的中间范围内,并且取决于FDD周期的长度L(x),稳定态要么由在x方向上均匀且关于狭缝中间不对称的FDD表示(L(x)值较小),要么分别由中间L(x)值和大L(x)值时的凸起状和桥状FDD表示。这些结果与其他作者早期进行的蒙特卡罗模拟结果一致。由于稳定态的自由能随着L(x)的增加而单调降低,因此可以得出结论,实际周期非常大(无限大),并且对于所采用的参数值,在整个狭缝上会生成一个有限长度的单桥。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验