Paton Robert S, Goodman Jonathan M
Unilever Centre for Molecular Science Informatics, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
J Org Chem. 2008 Feb 15;73(4):1253-63. doi: 10.1021/jo701849x. Epub 2008 Jan 23.
The boron-mediated aldol reactions of certain types of beta-alkoxy methyl ketone show remarkably high levels of stereoinduction with achiral aldehydes, leading preferentially to 1,5-anti related stereocenters. Given the low levels of asymmetric induction usually observed in acetate aldol reactions, this is of great synthetic utility and has been used successfully in the total synthesis of a number of polyketide natural products. We have investigated the effects of the alkoxy protecting group (OMe, OPMB, PMP acetal, tetrahydropyran, and OTBS) present in the boron enolate on the level and sense of remote 1,5-stereoinduction, using density functional theory calculations (B3LYP/6-31G**). Our predictions of diastereoselectivity from comparison of the competing aldol transition structures are in excellent qualitative and quantitative agreement with experimentally reported values. We conclude that the boron aldol reactions of unsubstituted boron enolates proceed via boat-shaped transition structures in which a stabilizing formyl hydrogen bond exists between the alkoxy oxygen and the aldehyde proton. It is this interaction that leads to preferential formation of the 1,5-anti adduct, by minimizing steric interactions between the beta-alkyl group and one of the ligands on boron. In the case of silyl ethers, the preference for this internal hydrogen bond is not observed due to the size of the protecting group and the electron-poor oxygen atom that donates electron density into the adjacent silicon atom. We show that this stereochemical model is also applicable in rationalizing the 1,4-syn stereoselectivity of boron aldol reactions involving certain alpha-chiral methyl ketones. These detailed results may be summarized as a conformational diagram that can be used to predict the sense of stereoinduction.
某些类型的β-烷氧基甲基酮的硼介导的羟醛反应,在手性醛存在下表现出非常高的立体诱导水平,优先生成1,5-反式相关的立体中心。鉴于在乙酸酯羟醛反应中通常观察到的不对称诱导水平较低,这具有很大的合成实用性,并已成功用于多种聚酮天然产物的全合成。我们使用密度泛函理论计算(B3LYP/6-31G**)研究了硼烯醇盐中存在的烷氧基保护基(甲氧基、对甲氧基苄基、对甲氧基苯基乙缩醛、四氢吡喃和叔丁基二甲基硅氧基)对远程1,5-立体诱导水平和方向的影响。通过比较竞争性羟醛过渡结构,我们对非对映选择性的预测与实验报道值在定性和定量上都非常吻合。我们得出结论,未取代的硼烯醇盐的硼羟醛反应通过船形过渡结构进行,其中在烷氧基氧和醛质子之间存在稳定的甲酰基氢键。正是这种相互作用通过最小化β-烷基与硼上的一个配体之间的空间相互作用,导致优先形成1,5-反式加合物。对于硅醚,由于保护基的大小以及向相邻硅原子提供电子密度的贫电子氧原子,未观察到对这种分子内氢键的偏好。我们表明,这种立体化学模型也适用于合理化涉及某些α-手性甲基酮的硼羟醛反应的1,4-顺式立体选择性。这些详细结果可以总结为一个构象图,可用于预测立体诱导的方向。