Salamon Zdzislaw, Devanathan Savitha, Tollin Gordon
Dept. of Biochemistry and Molecular Biophysics, University of Arizona, Tucson 85721, USA.
Methods Mol Biol. 2007;398:159-78. doi: 10.1007/978-1-59745-513-8_12.
Plasmon-waveguide resonance (PWR) spectroscopy is a high-sensitivity optical method for characterizing thin films immobilized onto the outer surface of a glass prism coated with thin films of a metal (e.g., silver) and a dielectric (e.g., silica). Resonance excitation by a polarized continuous wave (CW) laser above the critical angle for total internal reflection generates plasmon and waveguide modes, whose evanescent electromagnetic fields are localized on the outer surface and interact with the immobilized sample (in the present case a proteolipid bilayer). Plots of reflected light intensity vs the incident angle of the exciting light constitute a PWR spectrum, whose properties are determined by the refractive index (n), the thickness (t), and the optical extinction at the exciting wavelength (k) of the sample. Plasmon excitation can occur using light polarized both perpendicular (p) and parallel (s) to the plane of the resonator surface, allowing characterization of the structural properties of uniaxially oriented proteolipid films deposited on the surface. As will be demonstrated in what follows, PWR spectroscopy provides a powerful tool for directly observing in real-time microdomain formation (rafts) in such bilayers owing to lateral segregation of both lipids and proteins. In favorable cases, protein trafficking can also be monitored. Spectral simulation using Maxwell's equations allows these raft domains to be characterized in terms of their mass densities and thicknesses.
表面等离子体波导共振(PWR)光谱法是一种高灵敏度光学方法,用于表征固定在涂有金属(如银)和电介质(如二氧化硅)薄膜的玻璃棱镜外表面上的薄膜。通过高于全内反射临界角的偏振连续波(CW)激光进行共振激发,会产生表面等离子体和波导模式,其倏逝电磁场局限于外表面并与固定的样品(在本案例中为蛋白脂质双层)相互作用。反射光强度与激发光入射角的关系图构成了PWR光谱,其特性由样品的折射率(n)、厚度(t)以及激发波长下的光学消光系数(k)决定。使用垂直于(p)和平行于(s)谐振器表面平面偏振的光都可以激发表面等离子体,从而能够表征沉积在表面上的单轴取向蛋白脂质膜的结构特性。如下文所示,PWR光谱法为实时直接观察此类双层膜中由于脂质和蛋白质的横向分离而形成的微区(筏)提供了强大的工具。在有利的情况下,还可以监测蛋白质运输。使用麦克斯韦方程组进行光谱模拟,可以根据筏域的质量密度和厚度对其进行表征。