Suppr超能文献

用于评估废弃重金属矿山污染土地的地质统计学条件模拟

Geostatistical conditional simulation for the assessment of contaminated land by abandoned heavy metal mining.

作者信息

Ersoy Adem, Yunsel Tayfun Yusuf, Atici Umit

机构信息

Department of Mining Engineering, Engineering Faculty, Cukurova University, Adana, Turkey.

出版信息

Environ Toxicol. 2008 Feb;23(1):96-109. doi: 10.1002/tox.20314.

Abstract

Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.

摘要

废弃矿坑无疑会造成不同程度的土壤重金属污染,铅和锌等重金属污染已在全球范围内出现。接触这些元素可能会对人类健康和环境造成危害。在这项研究中,在英国卡辛顿牧场100×100米区域内,按照1米、5米和10米的规则网格间隔共采集了269个土壤样本。由于数据缺乏统计代表性,因此对数据集应用了单元去聚类技术。对转换后的数据进行元素的方向实验半变异函数分析表明,数据中存在几何和区域各向异性。获得了以铅和锌的球形和指数模型为特征的方向实验半变异函数最明显的连续性空间依赖结构。本研究采用概率方法报告了研究地点土壤中铅和锌浓度的空间分布及不确定性。该方法基于地质统计学的序贯高斯模拟(SGS),用于生成一系列条件图像,其特征是整个区域内重金属元素浓度具有同等可能的空间分布。对多个模拟结果进行后处理,能够绘制出污染区域和未污染区域的地图,并为元素浓度空间分布的不确定性提供一个模型。模拟的铅和锌浓度地图揭示了污染的程度和严重性。通过统计、直方图、变异函数再现和模拟误差对SGS进行了验证。这些元素的地图可用于修复研究,帮助世界各地参与废弃重金属矿场相关工作的决策者及其他人员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验