Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI.
IEEE Trans Med Imaging. 1995;14(2):193-204. doi: 10.1109/42.387701.
Low-pass filtering computed tomography (CT) images to reduce noise may smooth or modify image features which are very important to the physician. Image features are often more easily identified and processed in the time-frequency plane. The authors use time-frequency distributions for spatially varying filtering of noisy CT images, constraining time-frequency representation coefficients of the projection data or of the reconstructed image to be zero in certain regions of the time-frequency plane. The authors consider two different applications: 1) filtering the projection data and then performing image reconstruction; and 2) filtering the reconstructed image directly. Criteria minimized, subject to constraints, may be either a deterministic minimum weighted perturbation of the given projection data or a stochastic minimum mean-square error in colored Gaussian noise. Results show improvement over processing the image with a linear spatially invariant filter.
对计算机断层扫描(CT)图像进行低通滤波以降低噪声可能会使对医生非常重要的图像特征变得平滑或改变。在时频平面中,图像特征通常更容易识别和处理。作者使用时频分布对噪声 CT 图像进行空间变化滤波,将投影数据或重建图像的时频表示系数约束为零时频平面的某些区域为零。作者考虑了两种不同的应用:1)对投影数据进行滤波,然后进行图像重建;2)直接对重建图像进行滤波。在约束条件下最小化的准则可以是给定投影数据的确定性最小加权扰动,也可以是有色高斯噪声中的随机最小均方误差。结果表明,与使用线性空间不变滤波器处理图像相比,该方法有所改进。