Dept. of Electr. Eng., Washington Univ., Seattle, WA.
IEEE Trans Med Imaging. 1995;14(2):397-406. doi: 10.1109/42.387720.
The authors have developed a new classified vector quantizer (CVQ) using decomposition and prediction which does not need to store or transmit any side information. To obtain better quality in the compressed images, human visual perception characteristics are applied to the classification and bit allocation. This CVQ has been subjectively evaluated for a sequence of X-ray CT images and compared to a DCT coding method. Nine X-ray CT head images from three patients are compressed at 10:1 and 15:1 compression ratios and are evaluated by 13 radiologists. The evaluation data are analyzed statistically with analysis of variance and Tukey's multiple comparison. Even though there are large variations in judging image quality among readers, the proposed algorithm has shown significantly better quality than the DCT at a statistical, significance level of 0.05. Only an interframe CVQ can reproduce the quality of the originals at 10:1 compression at the same significance level. While the CVQ can reproduce compressed images that are not statistically different from the originals in quality, the effect on diagnostic accuracy remains to be investigated.
作者开发了一种新的分类矢量量化器 (CVQ),使用分解和预测,不需要存储或传输任何附加信息。为了在压缩图像中获得更好的质量,应用人类视觉感知特性进行分类和比特分配。对一系列 X 射线 CT 图像进行了主观评估,并与 DCT 编码方法进行了比较。从 3 个患者中选择 9 个 X 射线 CT 头部图像,以 10:1 和 15:1 的压缩比进行压缩,并由 13 名放射科医生进行评估。使用方差分析和 Tukey 的多重比较对评估数据进行了统计分析。尽管读者在判断图像质量方面存在很大差异,但在统计显著性水平为 0.05 时,与 DCT 相比,该算法的质量明显更好。只有在同一显著水平下,帧间 CVQ 才能复制 10:1 压缩时原始图像的质量。虽然 CVQ 可以复制在质量上与原始图像没有统计学差异的压缩图像,但对诊断准确性的影响仍有待研究。