Shukla Padma Kant, Eliasson Bengt
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, Bochum, Germany.
Philos Trans A Math Phys Eng Sci. 2008 May 28;366(1871):1757-69. doi: 10.1098/rsta.2007.2184.
We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser-plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.
我们对相对论强激光与由一个相对论性热电子分量和一个冷电子分量组成的双温等离子体之间的相互作用进行了理论和数值研究。在强激光 - 等离子体实验中经常会遇到这样的等离子体,其中通过拉曼不稳定性的无碰撞加热会导致电子分布函数出现高能尾部。电磁波(EMW)由麦克斯韦方程组支配,而等离子体由相对论性弗拉索夫方程和流体动力学方程支配。由于激光与等离子体之间的相互作用,我们可以使电子被捕获在激光脉冲的强尾场中,并形成相对论性电子空穴(REH),激光会被困在其中。这种电子空穴的特征是电子的非麦克斯韦分布,其中存在被俘获电子群体和自由电子群体。我们提出了一个激光与相对论性电子空穴相互作用的模型,以及计算机模拟,展示了耦合的电子空穴和电磁波包络的稳定性和动力学。