Crowhurst J C, Brown J M, Goncharov A F, Jacobsen S D
Chemistry, Materials, and Life Sciences Directorate, Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA.
Science. 2008 Jan 25;319(5862):451-3. doi: 10.1126/science.1149606.
Changes in the electronic configuration of iron at high pressures toward a spin-paired state within host minerals ferropericlase and silicate perovskite may directly influence the seismic velocity structure of Earth's lower mantle. We measured the complete elastic tensor of ferropericlase, (Mg(1-x),Fe(x))O (x = 0.06), through the spin transition of iron, whereupon the elastic moduli exhibited up to 25% softening over an extended pressure range from 40 to 60 gigapascals. These results are fully consistent with a simple thermodynamic description of the transition. Examination of previous compression data shows that the magnitude of softening increases with iron content up to at least x = 0.20. Although the spin transition in (Mg,Fe)O is too broad to produce an abrupt seismic discontinuity in the lower mantle, the transition will produce a correlated negative anomaly for both compressional and shear velocities that extends throughout most, if not all, of the lower mantle.
在高压下,铁在寄主矿物铁方镁石和硅酸盐钙钛矿中向自旋配对状态的电子构型变化可能直接影响地球下地幔的地震波速度结构。我们通过铁的自旋转变测量了铁方镁石(Mg(1-x),Fe(x))O (x = 0.06)的完整弹性张量,结果表明,在40至60吉帕斯卡的扩展压力范围内,弹性模量软化高达25%。这些结果与该转变的简单热力学描述完全一致。对先前压缩数据的研究表明,软化程度随铁含量增加,至少在x = 0.20之前是这样。尽管(Mg,Fe)O中的自旋转变过于宽泛,无法在下地幔中产生突然的地震间断面,但该转变将在整个下地幔大部分(如果不是全部)区域产生压缩波速度和剪切波速度的相关负异常。