Nagy Peter I, Völgyi Gergely, Takács-Novák Krisztina
Department of Medicinal and Biological Chemistry and the Center for Drug Design and Development, The University of Toledo, Toledo, Ohio 43606-3390, USA.
J Phys Chem B. 2008 Feb 21;112(7):2085-94. doi: 10.1021/jp075603c. Epub 2008 Jan 26.
Monte Carlo simulations in the NpT ensembles have been performed for the structure exploration of aqueous 1,4-dioxane solutions. Three different systems with all-atom dioxane:TIP4P water molar compositions of 2:500 (code:D2), 8:465 (D8), and 17:425 (D17) modeled solutions of 0.22, 0.88, and 1.86 mol/dm3 concentrations, respectively, at T = 298 K and p = 1 atm. The calculated solution densities increase from 0.992 to 1.002 g/cm3 with increasing dioxane concentration and approach the experimentally determined densities within 1%. This close agreement was achieved by utilizing RESP charges fitted to the in-solution IEF-PCM/B3LYP/6-31G* electrostatic potential of dioxane taken in its chair conformation and recently developed C, H steric parameters for ethers for calculations with a 12-6-1 all-atom potential. Solution structure analyses pointed out that the dioxane molecules arrange in the solutions with favorable distances of 4-8 angstroms for the ring symmetry centers. Within this range not only pairs of rings but triangular triads and tetrads have also been observed with center-center distances <8 angstroms. For the D8 system, about 25% of the sampled configurations included such a triad. In the case of the D17 model, two simulations starting from different solution configuration predicted different degrees for the dioxane aggregation in aqueous solution. In the more aggregated structure 3-21 triads are consistently maintained and 1-2 tetrads are formed in 58% of the configurations. Each dioxane oxygen forms about one hydrogen bond, on average, to a water molecule in the 0.22-1.86 molar range. The most likely O(dioxane)...H(water) hydrogen bond distance is 1.75-1.80 angstroms compared to the optimal distance of 1.72 angstroms in the isolated dimer. The optimal dioxane-water interaction energy of -5.65 kcal/mol indicates a remarkable hydrogen-bond acceptor character for dioxane.
已在NpT系综中进行了蒙特卡罗模拟,以探索1,4 - 二氧六环水溶液的结构。对三种不同体系进行了模拟,全原子二氧六环与TIP4P水的摩尔组成分别为2:500(代码:D2)、8:465(D8)和17:425(D17),分别模拟了浓度为0.22、0.88和1.86 mol/dm³的溶液,温度T = 298 K,压力p = 1 atm。计算得到的溶液密度随着二氧六环浓度的增加从0.992 g/cm³增加到1.002 g/cm³,且与实验测定的密度接近,误差在1%以内。通过使用根据处于椅式构象的二氧六环在溶液中的IEF - PCM/B3LYP/6 - 31G*静电势拟合的RESP电荷以及最近开发的用于醚的C、H空间参数,并采用12 - 6 - 1全原子势进行计算,实现了这种紧密的一致性。溶液结构分析指出,二氧六环分子在溶液中的排列使得环对称中心之间的距离在4 - 8埃之间较为有利。在此范围内,不仅观察到了环对,还观察到了中心 - 中心距离<8埃的三角形三联体和四联体。对于D8体系,约25%的采样构型包含这样的三联体。在D17模型的情况下,从不同溶液构型开始的两次模拟预测了二氧六环在水溶液中的聚集程度不同。在更聚集的结构中,3 - 21三联体持续存在,58%的构型中形成了1 - 2四联体。在0.22 - 1.86摩尔范围内,每个二氧六环氧原子平均与一个水分子形成约一个氢键。与孤立二聚体中1.72埃的最佳距离相比,最可能的O(二氧六环)...H(水)氢键距离为1.75 - 1.80埃。 - 5.65 kcal/mol的最佳二氧六环 - 水相互作用能表明二氧六环具有显著的氢键受体特性。