Alex Beatrice, Grover Claire, Haddow Barry, Kabadjov Mijail, Klein Ewan, Matthews Michael, Roebuck Stuart, Tobin Richard, Wang Xinglong
School of Informatics, University of Edinburgh, EH8 9LW, UK.
Pac Symp Biocomput. 2008:556-67.
Although text mining shows considerable promise as a tool for supporting the curation of biomedical text, there is little concrete evidence as to its effectiveness. We report on three experiments measuring the extent to which curation can be speeded up with assistance from Natural Language Processing (NLP), together with subjective feedback from curators on the usability of a curation tool that integrates NLP hypotheses for protein-protein interactions (PPIs). In our curation scenario, we found that a maximum speed-up of 1/3 in curation time can be expected if NLP output is perfectly accurate. The preference of one curator for consistent NLP output and output with high recall needs to be confirmed in a larger study with several curators.
尽管文本挖掘作为一种支持生物医学文本编目的工具显示出了巨大的潜力,但关于其有效性的具体证据却很少。我们报告了三项实验,这些实验测量了在自然语言处理(NLP)的辅助下编目可以加快的程度,以及编目人员对整合了蛋白质-蛋白质相互作用(PPI)的NLP假设的编目工具可用性的主观反馈。在我们的编目场景中,我们发现,如果NLP输出完全准确,编目时间最多可以加快三分之一。一位编目人员对一致的NLP输出和高召回率输出的偏好需要在一项有多位编目人员参与的更大规模研究中得到证实。