Kirchner Stefan, Si Qimiao
Department of Physics & Astronomy, Rice University, Houston, Texas 77005, USA.
Phys Rev Lett. 2008 Jan 18;100(2):026403. doi: 10.1103/PhysRevLett.100.026403. Epub 2008 Jan 16.
We consider the finite-temperature scaling properties of a Kondo-destroying quantum critical point in the Ising-anisotropic Bose-Fermi Kondo model (BFKM). A cluster-updating Monte Carlo approach is used, in order to reliably access a wide temperature range. The scaling function for the two-point spin correlator is found to have the form dictated by a boundary conformal field theory, even though the underlying Hamiltonian lacks conformal invariance. Similar conclusions are reached for all multipoint correlators of the spin-isotropic BFKM in a dynamical large-N limit. Our results suggest that the quantum critical local properties of the sub-Ohmic BFKM are those of an underlying boundary conformal field theory.
我们考虑了伊辛各向异性玻色 - 费米近藤模型(BFKM)中破坏近藤效应的量子临界点的有限温度标度性质。为了可靠地研究宽温度范围,我们采用了团簇更新蒙特卡罗方法。发现两点自旋关联函数的标度函数具有边界共形场论所规定的形式,尽管其基础哈密顿量缺乏共形不变性。在动态大N极限下,对于自旋各向同性BFKM的所有多点关联函数也得出了类似结论。我们的结果表明,亚欧姆BFKM的量子临界局部性质是基础边界共形场论的性质。