Riegert Anja, Just Wolfram, Baba Nilüfer, Kantz Holger
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D 01187 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066211. doi: 10.1103/PhysRevE.76.066211. Epub 2007 Dec 21.
Chaotic Hamiltonian systems with time scale separation display features known from nonequilibrium statistical physics even when no thermodynamic limit is involved. In particular, fast chaotic degrees of freedom can be modeled by suitable stochastic forces and a Fokker-Planck equation governing the slow parts of the motion can be derived. It turns out that the underlying Hamiltonian structure results in fluctuation-dissipation relations which link the parameters of the effective stochastic model. Such properties are crucial to ensure the correct stationary state of the stochastic description. Our results demonstrate that concepts from thermodynamics can be transferred to dynamical systems with few degrees of freedom.
具有时间尺度分离的混沌哈密顿系统即使在不涉及热力学极限的情况下,也会展现出非平衡统计物理中已知的特征。特别地,快速混沌自由度可以通过合适的随机力来建模,并且可以推导出一个控制运动慢部分的福克 - 普朗克方程。结果表明,潜在的哈密顿结构会导致涨落 - 耗散关系,该关系将有效随机模型的参数联系起来。这些性质对于确保随机描述的正确稳态至关重要。我们的结果表明,热力学概念可以转移到具有少量自由度的动力系统中。