Zamora-Sillero Elías, Quintero Niurka R, Mertens Franz G
Departamento de Física Aplicada I, E. U. P., Universidad de Sevilla, Virgen de Africa 7, 41011 Sevilla, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066601. doi: 10.1103/PhysRevE.76.066601. Epub 2007 Dec 6.
We study the soliton ratchets in the damped sine-Gordon equation with periodic nonsinusoidal, additive, and parametric driving forces. By means of symmetry analysis of this system we show that the net motion of the kink is not possible if the frequencies of both forces satisfy a certain relationship. Using a collective coordinate theory with two degrees of freedom, we show that the ratchet motion of kinks appears as a consequence of a resonance between the oscillations of the momentum and the width of the kink. We show that the equations of motion that fulfill these collective coordinates follow from the corresponding symmetry properties of the original systems. As a further application of the collective coordinate technique we obtain another relationship between the frequencies of the parametric and additive drivers that suppresses the ratchetlike motion of the kink. We check all these results by means of numerical simulations of the original system and the numerical solutions of the collective coordinate equations.
我们研究了具有周期性非正弦、加性和参数驱动力的阻尼正弦 - 戈登方程中的孤子棘轮。通过对该系统的对称性分析,我们表明,如果两种力的频率满足一定关系,扭结的净运动是不可能的。使用具有两个自由度的集体坐标理论,我们表明扭结的棘轮运动是动量振荡和扭结宽度之间共振的结果。我们表明,满足这些集体坐标的运动方程源于原始系统的相应对称性。作为集体坐标技术的进一步应用,我们得到了参数驱动和加性驱动频率之间的另一种关系,该关系抑制了扭结的棘轮状运动。我们通过对原始系统的数值模拟和集体坐标方程的数值解来检验所有这些结果。