Magdziarz Marcin, Weron Aleksander
Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066708. doi: 10.1103/PhysRevE.76.066708. Epub 2007 Dec 26.
Subdiffusion in the presence of an external force field can be described in phase space by the fractional Klein-Kramers equation. In this paper, we explore the stochastic structure of this equation. Using a subordination method, we define a random process whose probability density function is a solution of the fractional Klein-Kramers equation. The structure of the introduced process agrees with the two-stage scenario underlying the anomalous diffusion mechanism, in which trapping events are superimposed on the Langevin dynamics. We develop an efficient computer algorithm for visualization of fractional Klein-Kramers dynamics and present some simulation results based on Monte Carlo techniques.
在外力场存在的情况下,亚扩散可在相空间中由分数阶克莱因 - 克喇末方程描述。在本文中,我们探究该方程的随机结构。使用从属方法,我们定义一个随机过程,其概率密度函数是分数阶克莱因 - 克喇末方程的一个解。所引入过程的结构与反常扩散机制背后的两阶段情形相符,在该情形中,捕获事件叠加在朗之万动力学之上。我们开发了一种用于可视化分数阶克莱因 - 克喇末动力学的高效计算机算法,并基于蒙特卡罗技术给出了一些模拟结果。