Suppr超能文献

基于对称卷积的分块 DCT 域 L/M 倍图像缩放。

L/M-fold image resizing in block-DCT domain using symmetric convolution.

机构信息

Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

出版信息

IEEE Trans Image Process. 2003;12(9):1016-34. doi: 10.1109/TIP.2003.816008.

Abstract

Image resizing is to change an image size by upsampling or downsampling of a digital image. Most still images and video frames on digital media are given in a compressed domain. Image resizing of a compressed image can be performed in the spatial domain via decompression and recompression. In general, resizing of a compressed image in a compressed domain is much faster than that in the spatial domain. We propose a novel approach to resize images with L/M resizing ratio in the discrete cosine transform (DCT) domain, which exploits the multiplication-convolution property of DCT (multiplication in the spatial domain corresponds to symmetric convolution in the DCT domain). When an image is given in terms of its 8 x 8 block-DCT coefficients, its resized image is also obtained in 8 x 8 block-DCT coefficients. The proposed approach is computationally fast and produces visually fine images with high PSNR.

摘要

图像缩放是通过对数字图像进行上采样或下采样来改变图像大小。数字媒体上的大多数静态图像和视频帧都以压缩域的形式给出。可以通过解压缩和重新压缩在空间域中对压缩图像进行图像缩放。一般来说,在压缩域中对压缩图像进行缩放比在空间域中快得多。我们提出了一种在离散余弦变换(DCT)域中以 L/M 缩放比缩放图像的新方法,该方法利用了 DCT 的乘法-卷积特性(空间域中的乘法对应于 DCT 域中的对称卷积)。当以 8x8 块 DCT 系数的形式给出图像时,其缩放后的图像也以 8x8 块 DCT 系数的形式获得。该方法计算速度快,生成的图像具有高 PSNR 的视觉效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验