Peng Hui, Ozaki T, Haggan-Ozaki V, Toyoda Y
Coll. of Inf. Sci. and Eng., Central South Univ., China.
IEEE Trans Neural Netw. 2003;14(2):432-8. doi: 10.1109/TNN.2003.809395.
This paper considers the nonlinear systems modeling problem for control. A structured nonlinear parameter optimization method (SNPOM) adapted to radial basis function (RBF) networks and an RBF network-style coefficients autoregressive model with exogenous variable model parameter estimation is presented. This is an off-line nonlinear model parameter optimization method, depending partly on the Levenberg-Marquardt method for nonlinear parameter optimization and partly on the least-squares method using singular value decomposition for linear parameter estimation. When compared with some other algorithms, the SNPOM accelerates the computational convergence of the parameter optimization search process of RBF-type models. The usefulness of this approach is illustrated by means of several examples.
本文考虑了用于控制的非线性系统建模问题。提出了一种适用于径向基函数(RBF)网络的结构化非线性参数优化方法(SNPOM)以及一种具有外生变量模型参数估计的RBF网络式系数自回归模型。这是一种离线非线性模型参数优化方法,部分依赖于用于非线性参数优化的列文伯格-马夸尔特方法,部分依赖于使用奇异值分解进行线性参数估计的最小二乘法。与其他一些算法相比,SNPOM加速了RBF型模型参数优化搜索过程的计算收敛。通过几个例子说明了这种方法的有效性。