Sissler Marie, Lorber Bernard, Messmer Marie, Schaller André, Pütz Joern, Florentz Catherine
Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France.
Methods. 2008 Feb;44(2):176-89. doi: 10.1016/j.ymeth.2007.11.002.
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
哺乳动物线粒体(mt)基因组仅编码13种蛋白质,它们是二磷酸腺苷(ADP)氧化磷酸化为三磷酸腺苷(ATP)过程中的重要组成部分。这些蛋白质的合成依赖于合适的线粒体翻译机制。虽然22种转运RNA(tRNA)和2种核糖体RNA(rRNA)也由线粒体基因组编码,但包括氨酰-tRNA合成酶(aaRS)在内的所有其他因子都在细胞核中编码并导入。对哺乳动物线粒体氨酰化系统(以及一般的线粒体翻译)的研究不仅在进化方面越来越受到关注,而且在与线粒体tRNA、合成酶或其他因子基因中的突变相关的疾病数量不断增加方面也受到关注。在此,我们报告了用于人类/哺乳动物线粒体tRNA和aaRS生化、功能及结构表征的方法。天然和体外转录tRNA的制备程序还附带了针对易出现结构不稳定性和化学脆弱性的tRNA的特定处理建议。大规模制备毫克量的高度可溶性重组合成酶是进行结构研究的先决条件,这需要特别优化。回顾了导致四种线粒体aaRS结晶及获得高分辨率结构的成功实例,并讨论了局限性。最后,强调了建立体外线粒体翻译系统的必要性和现状。对哺乳动物氨酰化系统的一个子集进行生化表征已经揭示了许多前所未有的特性,这些特性对于进化研究和法医研究具有重要意义。该领域的进一步努力必将带来许多令人兴奋的发现。