Jarman Ian H, Etchells Terence A, Martín Jose D, Lisboa Paulo J G
School of Computing and Mathematical Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
Artif Intell Med. 2008 Mar;42(3):165-88. doi: 10.1016/j.artmed.2007.11.005. Epub 2008 Feb 1.
An integrated decision support framework is proposed for clinical oncologists making prognostic assessments of patients with operable breast cancer. The framework may be delivered over a web interface. It comprises a triangulation of prognostic modelling, visualisation of historical patient data and an explanatory facility to interpret risk group assignments using empirically derived Boolean rules expressed directly in clinical terms.
The prognostic inferences in the interface are validated in a multicentre longitudinal cohort study by modelling retrospective data from 917 patients recruited at Christie Hospital, Wilmslow between 1983 and 1989 and predicting for 931 patients recruited in the same centre during 1990-1993. There were also 291 patients recruited between 1984 and 1998 at the Clatterbridge Centre for Oncology and the Linda McCartney Centre, Liverpool, UK.
There are three novel contributions relating this paper to breast cancer cases. First, the widely used Nottingham prognostic index (NPI) is enhanced with additional clinical features from which prognostic assessments can be made more specific for patients in need of adjuvant treatment. This is shown with a cross matching of the NPI and a new prognostic index which also provides a two-dimensional visualisation of the complete patient database by risk of negative outcome. Second, a principled rule-extraction method, orthogonal search rule extraction, generates readily interpretable explanations of risk group allocations derived from a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). Third, 95% confidence intervals for individual predictions of survival are obtained by Monte Carlo sampling from the PLANN-ARD model.
为临床肿瘤学家对可手术乳腺癌患者进行预后评估提出一个综合决策支持框架。该框架可通过网络界面提供。它包括预后建模的三角测量、历史患者数据的可视化以及一个解释工具,用于使用直接以临床术语表达的经验性布尔规则来解释风险组分配。
通过对1983年至1989年在威尔姆斯洛克里斯蒂医院招募的917例患者的回顾性数据进行建模,并对1990年至1993年在同一中心招募的931例患者进行预测,在一项多中心纵向队列研究中验证了界面中的预后推断。此外,在英国利物浦的克拉特布里奇肿瘤中心和琳达·麦卡特尼中心,于1984年至1998年期间招募了291例患者。
本文在乳腺癌病例方面有三个新颖的贡献。首先,广泛使用的诺丁汉预后指数(NPI)通过额外的临床特征得到增强,从而可以对需要辅助治疗的患者进行更具体的预后评估。通过将NPI与一个新的预后指数进行交叉匹配展示了这一点,该新预后指数还按负面结果风险对完整患者数据库进行二维可视化。其次,一种有原则的规则提取方法,即正交搜索规则提取,从具有自动相关性确定的部分逻辑人工神经网络(PLANN - ARD)生成易于解释的风险组分配解释。第三,通过从PLANN - ARD模型进行蒙特卡罗抽样获得个体生存预测的95%置信区间。