Suppr超能文献

以1-氯-2,2-二甲基氮杂环丙烷互变反应为例的气相色谱中反应动力学的研究方法。

Methods for studying reaction kinetics in gas chromatography, exemplified by using the 1-chloro-2,2-dimethylaziridine interconversion reaction.

作者信息

Krupcík J, Mydlová J, Májek P, Simon P, Armstrong D W

机构信息

Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, STU, Bratislava, Slovakia.

出版信息

J Chromatogr A. 2008 Apr 4;1186(1-2):144-60. doi: 10.1016/j.chroma.2008.01.028. Epub 2008 Jan 17.

Abstract

In this paper, methods are described that are used for studying first-order reaction kinetics by gas chromatography. Basic theory is summarized and illustrated using the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers as a representative example. For the determination of the kinetic and thermodynamic activation data of interconversion the following methods are reviewed: (i) classical kinetic methods where samples of batch-wise kinetic studies are analyzed by enantioselective gas chromatography, (ii) stopped-flow methods performed on one chiral column, (iii) stopped-flow methods performed on an achiral column or empty capillary coupled in series with two chiral columns, (iv) on-flow method performed on an achiral column coupled in series with two chiral columns, and (v) reaction gas chromatography, known as a dynamic gas chromatography, where the interconversion is performed on chiral column during the separation process. The determination of kinetic and thermodynamic activation data by methods (i) through (iv) is straightforward as the experimental data needed for the evaluation (particularly the concentration of reaction constituents) are accessible from the chromatograms. The evaluation of experiments from reaction chromatography method (v) is complex as the concentration bands of reaction constituents are overlapped. The following procedures have been developed to determination peak areas of reaction constituents in such complex chromatograms: (i) methods based on computer-assisted simulations of chromatograms where the kinetic activation parameters for the interconversion of enantiomers are obtained by iterative comparison of experimental and simulated chromatograms, (ii) stochastic methods based on the simulation of Gaussian distribution functions and using a time-dependent probability density function, (iii) approximation function and unified equation, (iv) computer-assisted peak deconvolution methods. Evaluation of the experimental data permits the calculation of apparent rate constants for both the interconversion of the first eluted (k (A-->B)(app)) as well as the second eluted (k(B-->A)(app)) enantiomer. The mean value for all the rate constants (from all the reviewed methods) was found for 1-chloro-2,2-dimethylaziridine A-->B enantiomer interconversion at 100 degrees C: k (A-->B)(app)=21.2 x 10(-4)s(-1) with a standard deviation sigma=10.7 x 10(-4). Evaluating data for reaction chromatography at 100 degrees C {k (app)=k(A-->B)(app)=k(B-->A)(app)=13.9 x 10(-4)s(-1), sigma=3.0 x 10(-4)s(-1)} shows that differences between k(A-->B)(app) and k(B-->A)(app) are the same within experimental error. It was shown both theoretically and experimentally that the Arrhenius activation energy (E(a)) calculated from Arrhenius plots (lnk(app) versus 1/T) is proportional to the enthalpy of activation {E(a)=DeltaH+RT}. Statistical treatment of Gibbs activation energy values gave: DeltaG (app)=110.5kJmol(-1), sigma=2.4kJmol(-1), DeltaG (A-->B)(app)=110.5kJmol(-1), sigma=2.2kJmol(-1), DeltaG (B-->A)(app)=110.3kJmol(-1), sigma=2.8kJmol(-1). This shows that the apparent Gibbs energy barriers for the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers are equal DeltaG (app)=DeltaG(A-->B)(app)=DeltaG(B-->A)(app) and within the given precision of measurement independent of the experimental method used.

摘要

本文描述了通过气相色谱研究一级反应动力学的方法。以1-氯-2,2-二甲基氮杂环丙烷对映体的相互转化为代表实例,总结并阐述了基本理论。为测定相互转化的动力学和热力学活化数据,对以下方法进行了综述:(i) 经典动力学方法,即通过对映选择性气相色谱分析间歇式动力学研究的样品;(ii) 在一根手性柱上进行的停流法;(iii) 在一根非手性柱或空毛细管与两根手性柱串联的情况下进行的停流法;(iv) 在一根非手性柱与两根手性柱串联的情况下进行的在线法;(v) 反应气相色谱法,即动态气相色谱法,其中在分离过程中在手性柱上进行相互转化。通过方法(i)至(iv)测定动力学和热力学活化数据很直接,因为评估所需的实验数据(特别是反应组分的浓度)可从色谱图中获取。反应色谱法(v)的实验评估很复杂,因为反应组分的浓度带相互重叠。已开发出以下程序来测定此类复杂色谱图中反应组分的峰面积:(i) 基于色谱图计算机辅助模拟的方法,其中通过实验色谱图与模拟色谱图的迭代比较获得对映体相互转化的动力学活化参数;(ii) 基于高斯分布函数模拟并使用时间相关概率密度函数的随机方法;(iii) 近似函数和统一方程;(iv) 计算机辅助峰去卷积方法。对实验数据的评估允许计算第一个洗脱对映体(k(A→B)(app))以及第二个洗脱对映体(k(B→A)(app))相互转化的表观速率常数。在100℃下,1-氯-2,2-二甲基氮杂环丙烷A→B对映体相互转化的所有速率常数(来自所有综述方法)的平均值为:k(A→B)(app)=21.2×10⁻⁴ s⁻¹,标准偏差σ = 10.7×10⁻⁴。在100℃下对反应色谱数据的评估{k(app)=k(A→B)(app)=k(B→A)(app)=13.9×10⁻⁴ s⁻¹,σ = 3.0×10⁻⁴ s⁻¹}表明,k(A→B)(app)和k(B→A)(app)之间的差异在实验误差范围内是相同的。从理论和实验上都表明,根据阿仑尼乌斯图(lnk(app)对1/T)计算的阿仑尼乌斯活化能(E(a))与活化焓成正比{E(a)=ΔH + RT}。吉布斯活化能值的统计处理结果为:ΔG(app)=110.5 kJmol⁻¹,σ = 2.4 kJmol⁻¹,ΔG(A→B)(app)=110.5 kJmol⁻¹,σ = 2.2 kJmol⁻¹,ΔG(B→A)(app)=110.3 kJmol⁻¹,σ = 2.8 kJmol⁻¹。这表明1-氯-2,2-二甲基氮杂环丙烷对映体相互转化所对应的表观吉布斯能垒相等,即ΔG(app)=ΔG(A→B)(app)=ΔG(B→A)(app),并且在给定的测量精度范围内与所使用的实验方法无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验