Suppr超能文献

关于用于求解非线性单调变分不等式问题的递归神经网络分析。

On the analysis of a recurrent neural network for solving nonlinear monotone variational inequality problems.

作者信息

Liang Xue-Bin

机构信息

Dept. of Electr. and Comput. Eng., Delaware Univ., Newark, DE.

出版信息

IEEE Trans Neural Netw. 2002;13(2):481-6. doi: 10.1109/72.991434.

Abstract

We investigate the qualitative properties of a recurrent neural network (RNN) for solving the general monotone variational inequality problems (VIPs), defined over a nonempty closed convex subset, which are assumed to have a nonempty solution set but need not be symmetric. The equilibrium equation of the RNN system simply coincides with the nonlinear projection equation of the VIP to be solved. We prove that the RNN system has a global and bounded solution trajectory starting at any given initial point in the above closed convex subset which is positive invariant for the RNN system. For general monotone VIPs, we show by an example that the trajectory of the RNN system can converge to a limit cycle rather than an equilibrium in the case that the monotone VIPs are not symmetric. Contrary to this, for the strictly monotone VIPs, it is shown that every solution trajectory of the RNN system starting from the above closed convex subset converges to the unique equilibrium which is also locally asymptotically stable in the sense of Lyapunov, no matter whether the VIPs are symmetric or nonsymmetric. For the uniformly monotone VIPs, the aforementioned solution trajectory of the RNN system converges to the unique equilibrium exponentially.

摘要

我们研究了一种递归神经网络(RNN)的定性性质,用于解决在非空闭凸子集上定义的一般单调变分不等式问题(VIPs),假设该问题具有非空解集,但不一定是对称的。RNN系统的平衡方程恰好与待求解的VIP的非线性投影方程一致。我们证明,RNN系统在上述闭凸子集中从任何给定初始点出发都有一个全局有界的解轨迹,该轨迹对于RNN系统是正不变的。对于一般单调VIPs,我们通过一个例子表明,在单调VIPs不对称的情况下,RNN系统的轨迹可能收敛到一个极限环而不是一个平衡点。与此相反,对于严格单调VIPs,结果表明,从上述闭凸子集出发的RNN系统的每个解轨迹都收敛到唯一的平衡点,该平衡点在李雅普诺夫意义下也是局部渐近稳定的,无论VIPs是对称还是非对称。对于一致单调VIPs,RNN系统的上述解轨迹指数收敛到唯一的平衡点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验