Suppr超能文献

多类随机神经网络中的学习

Learning in the multiple class random neural network.

作者信息

Gelenbe E, Hussain K F

机构信息

Sch. of Electr. Eng. and Comput. Sci., Central Florida Univ., Orlando, FL, USA.

出版信息

IEEE Trans Neural Netw. 2002;13(6):1257-67. doi: 10.1109/TNN.2002.804228.

Abstract

Spiked recurrent neural networks with "multiple classes" of signals have been recently introduced by Gelenbe and Fourneau (1999), as an extension of the recurrent spiked random neural network introduced by Gelenbe (1989). These new networks can represent interconnected neurons, which simultaneously process multiple streams of data such as the color information of images, or networks which simultaneously process streams of data from multiple sensors. This paper introduces a learning algorithm which applies both to recurrent and feedforward multiple signal class random neural networks (MCRNNs). It is based on gradient descent optimization of a cost function. The algorithm exploits the analytical properties of the MCRNN and requires the solution of a system of nC linear and nC nonlinear equations (where C is the number of signal classes and n is the number of neurons) each time the network learns a new input-output pair. Thus, the algorithm is of O([nC]/sup 3/) complexity for the recurrent case, and O([nC]/sup 2/) for a feedforward MCRNN. Finally, we apply this learning algorithm to color texture modeling (learning), based on learning the weights of a recurrent network directly from the color texture image. The same trained recurrent network is then used to generate a synthetic texture that imitates the original. This approach is illustrated with various synthetic and natural textures.

摘要

带有“多类”信号的脉冲递归神经网络最近由盖伦贝和富尔诺(1999年)提出,作为盖伦贝(1989年)提出的递归脉冲随机神经网络的扩展。这些新网络可以表示相互连接的神经元,它们同时处理多数据流,如图像的颜色信息,或者同时处理来自多个传感器的数据流的网络。本文介绍了一种学习算法,该算法适用于递归和前馈多信号类随机神经网络(MCRNN)。它基于代价函数的梯度下降优化。该算法利用了MCRNN的分析特性,每次网络学习一个新的输入-输出对时,都需要求解一个由nC个线性方程和nC个非线性方程组成的系统(其中C是信号类的数量,n是神经元的数量)。因此,对于递归情况,该算法的复杂度为O([nC]³),对于前馈MCRNN,复杂度为O([nC]²)。最后,我们将这种学习算法应用于颜色纹理建模(学习),即直接从颜色纹理图像学习递归网络的权重。然后使用相同的训练好的递归网络生成模仿原始纹理的合成纹理。各种合成纹理和自然纹理都说明了这种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验