Yang S X, Meng M H
Sch. of Eng., Univ. of Guelph, Ont., Canada.
IEEE Trans Neural Netw. 2003;14(6):1541-52. doi: 10.1109/TNN.2003.820618.
A neural dynamics based approach is proposed for real-time motion planning with obstacle avoidance of a mobile robot in a nonstationary environment. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation or an additive equation. The real-time collision-free robot motion is planned through the dynamic neural activity landscape of the neural network without any learning procedures and without any local collision-checking procedures at each step of the robot movement. Therefore the model algorithm is computationally simple. There are only local connections among neurons. The computational complexity linearly depends on the neural network size. The stability of the proposed neural network system is proved by qualitative analysis and a Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.
提出了一种基于神经动力学的方法,用于在非平稳环境中为移动机器人进行具有避障功能的实时运动规划。拓扑组织神经网络中每个神经元的动力学由分流方程或加法方程表征。通过神经网络的动态神经活动态势来规划机器人的实时无碰撞运动,无需任何学习过程,也无需在机器人运动的每一步进行任何局部碰撞检查过程。因此,该模型算法计算简单。神经元之间只有局部连接。计算复杂度线性依赖于神经网络的规模。通过定性分析和李雅普诺夫稳定性理论证明了所提出神经网络系统的稳定性。通过仿真研究验证了所提方法的有效性和效率。