Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
IEEE Trans Image Process. 2002;11(2):113-22. doi: 10.1109/83.982819.
We examine the rate-distortion performance and computational complexity of linear transforms for lossy data compression. The goal is to better understand the performance/complexity tradeoffs associated with using the Karhunen-Loeve transform (KLT) and its fast approximations. Since the optimal transform for transform coding is unknown in general, we investigate the performance penalties associated with using the KLT by examining cases where the KLT fails, developing a new transform that corrects the KLT's failures in those examples, and then empirically testing the performance difference between this new transform and the KLT. Experiments demonstrate that while the worst KLT can yield transform coding performance at least 3 dB worse than that of alternative block transforms, the performance penalty associated with using the KLT on real data sets seems to be significantly smaller, giving at most 0.5 dB difference in our experiments. The KLT and its fast variations studied here range in complexity requirements from O(n(2)) to O(n log n) in coding vectors of dimension n. We empirically investigate the rate-distortion performance tradeoffs associated with traversing this range of options. For example, an algorithm with complexity O(n(3/2)) and memory O(n) gives 0.4 dB performance loss relative to the full KLT in our image compression experiments.
我们研究了有损数据压缩中线性变换的率失真性能和计算复杂度。目标是更好地理解使用 Karhunen-Loeve 变换 (KLT) 及其快速逼近所带来的性能/复杂度权衡。由于一般来说,用于变换编码的最优变换是未知的,因此我们通过检查 KLT 失败的情况来研究使用 KLT 所带来的性能损失,开发一种新的变换来纠正这些示例中的 KLT 失败,然后通过经验测试这种新变换与 KLT 之间的性能差异。实验表明,虽然最差的 KLT 可能导致变换编码性能至少比替代块变换差 3dB,但在实际数据集上使用 KLT 所带来的性能损失似乎要小得多,在我们的实验中最多相差 0.5dB。这里研究的 KLT 及其快速变化在编码向量维度为 n 时的复杂度要求从 O(n^2)到 O(nlogn)。我们通过经验研究了遍历这一系列选项的率失真性能权衡。例如,在我们的图像压缩实验中,复杂度为 O(n^(3/2))且内存为 O(n)的算法与完整的 KLT 相比,性能损失为 0.4dB。