Epifanio Irene, Ayala Guillermo
Departament de Matematiques, Univ. Jaume I de Castello, Spain.
IEEE Trans Image Process. 2002;11(8):859-67. doi: 10.1109/TIP.2002.801119.
Texture classification of an image or subimage is an important problem in texture analysis. Many procedures have been proposed. A global framework for texture classification based on random closed set theory is proposed in this paper. In this approach, a binary texture is considered as an outcome of a random closed set. Some distributional descriptors of this stochastic model are used as texture features in order to classify the binary texture, in particular spherical and linear contact distributions and K-functions. If a grayscale texture has to be classified, then the original texture is reduced to a multivariate random closed set where each component (a different random set) corresponds with those pixels verifying a local property. Again, some functional descriptors of the multivariate random closed set defined from the texture can be used as texture features to describe and classify the grayscale texture. Marginal and cross spherical and linear contact distributions and K-functions have been used. Experimental validation is provided by using Brodatz's database and another standard texture database.
图像或子图像的纹理分类是纹理分析中的一个重要问题。已经提出了许多方法。本文提出了一种基于随机闭集理论的纹理分类全局框架。在这种方法中,二值纹理被视为随机闭集的结果。该随机模型的一些分布描述符被用作纹理特征,以便对二值纹理进行分类,特别是球面和线性接触分布以及K函数。如果要对灰度纹理进行分类,则将原始纹理简化为多元随机闭集,其中每个分量(不同的随机集)对应于验证局部属性的那些像素。同样,从纹理定义的多元随机闭集的一些函数描述符可以用作纹理特征来描述和分类灰度纹理。已经使用了边际和交叉球面及线性接触分布以及K函数。通过使用布罗达茨数据库和另一个标准纹理数据库进行了实验验证。