School of Electrical Engineering, The University of New South Wales, Sydney 2052, Australia.
IEEE Trans Image Process. 2003;12(12):1530-42. doi: 10.1109/TIP.2003.819433.
We propose a new framework for highly scalable video compression, using a lifting-based invertible motion adaptive transform (LIMAT). We use motion-compensated lifting steps to implement the temporal wavelet transform, which preserves invertibility, regardless of the motion model. By contrast, the invertibility requirement has restricted previous approaches to either block-based or global motion compensation. We show that the proposed framework effectively applies the temporal wavelet transform along a set of motion trajectories. An implementation demonstrates high coding gain from a finely embedded, scalable compressed bit-stream. Results also demonstrate the effectiveness of temporal wavelet kernels other than the simple Haar, and the benefits of complex motion modeling, using a deformable triangular mesh. These advances are either incompatible or difficult to achieve with previously proposed strategies for scalable video compression. Video sequences reconstructed at reduced frame-rates, from subsets of the compressed bit-stream, demonstrate the visually pleasing properties expected from low-pass filtering along the motion trajectories. The paper also describes a compact representation for the motion parameters, having motion overhead comparable to that of motion-compensated predictive coders. Our experimental results compare favorably to others reported in the literature, however, our principal objective is to motivate a new framework for highly scalable video compression.
我们提出了一种新的基于提升的可逆变动态自适应变换(LIMAT)的高可扩展视频压缩框架。我们使用运动补偿提升步骤来实现时间子波变换,无论运动模型如何,都能保持可逆变性。相比之下,可逆变性要求限制了以前的方法只能使用基于块或全局运动补偿。我们表明,所提出的框架可以有效地沿着一组运动轨迹应用时间子波变换。一个实现展示了从精细嵌入的、可扩展的压缩比特流中获得的高编码增益。结果还表明,除了简单的 Haar 之外,时间子波核的有效性以及使用可变形三角网格进行复杂运动建模的好处。这些进展与以前提出的可扩展视频压缩策略是不兼容的,或者很难实现。从压缩比特流的子集重建的降低帧率的视频序列,展示了沿着运动轨迹进行低通滤波所期望的视觉效果。本文还描述了一种紧凑的运动参数表示方法,其运动开销与运动补偿预测编码器相当。我们的实验结果与文献中报道的其他结果相比具有优势,然而,我们的主要目标是为高可扩展视频压缩提供一个新的框架。