Suppr超能文献

神经模糊范式中的集成特征分析与基于模糊规则的系统识别

Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm.

作者信息

Chakrborty D, Pal N R

机构信息

Electron. & Commun. Sci. Unit, Indian Stat. Inst., Calcutta.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2001;31(3):391-400. doi: 10.1109/3477.931526.

Abstract

Most methods of fuzzy rule-based system identification (SI) either ignore feature analysis or do it in a separate phase. This paper proposes a novel neuro-fuzzy system that can simultaneously do feature analysis and SI in an integrated manner. It is a five-layered feed-forward network for realizing a fuzzy rule-based system. The second layer of the net is the most important one, which along with fuzzification of the input also learns a modulator function for each input feature. This enables online selection of important features by the network. The system is so designed that learning maintains the nonnegative characteristic of certainty factors of rules. The proposed network is tested on both synthetic and real data sets and the performance is found to be quite satisfactory. To get an "optimal" network architecture and to eliminate conflicting rules, nodes and links are pruned and then the structure is retrained. The pruned network retains almost the same level of performance as that of the original one.

摘要

大多数基于模糊规则的系统识别(SI)方法要么忽略特征分析,要么在单独的阶段进行。本文提出了一种新型神经模糊系统,它可以以集成的方式同时进行特征分析和系统识别。它是一个用于实现基于模糊规则系统的五层前馈网络。网络的第二层是最重要的一层,它除了对输入进行模糊化之外,还为每个输入特征学习一个调制函数。这使得网络能够在线选择重要特征。该系统的设计使得学习过程保持规则确定性因子的非负特性。所提出的网络在合成数据集和真实数据集上都进行了测试,发现性能相当令人满意。为了获得“最优”的网络架构并消除冲突规则,对节点和链接进行修剪,然后对结构进行重新训练。修剪后的网络保留了与原始网络几乎相同的性能水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验