Wang C H, Liu H L, Lin C T
Sch. of Microelectron. Eng., Griffith Univ., Brisbane, Qld.
IEEE Trans Syst Man Cybern B Cybern. 2001;31(3):467-75. doi: 10.1109/3477.931548.
The stability analysis of the learning rate for a two-layer neural network (NN) is discussed first by minimizing the total squared error between the actual and desired outputs for a set of training vectors. The stable and optimal learning rate, in the sense of maximum error reduction, for each iteration in the training (back propagation) process can therefore be found for this two-layer NN. It has also been proven in this paper that the dynamic stable learning rate for this two-layer NN must be greater than zero. Thus it Is guaranteed that the maximum error reduction can be achieved by choosing the optimal learning rate for the next training iteration. A dynamic fuzzy neural network (FNN) that consists of the fuzzy linguistic process as the premise part and the two-layer NN as the consequence part is then illustrated as an immediate application of our approach. Each part of this dynamic FNN has its own learning rate for training purpose. A genetic algorithm is designed to allow a more efficient tuning process of the two learning rates of the FNN. The objective of the genetic algorithm is to reduce the searching time by searching for only one learning rate, which is the learning rate of the premise part, in the FNN. The dynamic optimal learning rates of the two-layer NN can be found directly using our innovative approach. Several examples are fully illustrated and excellent results are obtained for the model car backing up problem and the identification of nonlinear first order and second order systems.
首先,通过最小化一组训练向量的实际输出与期望输出之间的总平方误差,讨论了两层神经网络(NN)学习率的稳定性分析。因此,对于该两层神经网络,可以找到训练(反向传播)过程中每次迭代的稳定且最优的学习率,即在最大误差减少意义上的学习率。本文还证明了该两层神经网络的动态稳定学习率必须大于零。因此,可以保证通过为下一次训练迭代选择最优学习率来实现最大误差减少。然后,展示了一种动态模糊神经网络(FNN),它由作为前提部分的模糊语言过程和作为结果部分的两层神经网络组成,作为我们方法的直接应用。该动态FNN的每个部分都有自己用于训练的学习率。设计了一种遗传算法,以实现对FNN的两个学习率进行更有效的调整。遗传算法的目标是通过仅搜索FNN中前提部分的学习率这一个学习率来减少搜索时间。使用我们的创新方法可以直接找到两层神经网络的动态最优学习率。通过几个例子对模型汽车倒车问题以及非线性一阶和二阶系统的识别进行了充分说明,并取得了优异的结果。