Suppr超能文献

用于识别Takagi-Sugeno模糊模型的改进型Gath-Geva模糊聚类

Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models.

作者信息

Abonyi J, Babuska R, Szeifert F

机构信息

Dept. of Process Eng., Veszprem Univ., Hungary.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):612-21. doi: 10.1109/TSMCB.2002.1033180.

Abstract

The construction of interpretable Takagi-Sugeno (TS) fuzzy models by means of clustering is addressed. First, it is shown how the antecedent fuzzy sets and the corresponding consequent parameters of the TS model can be derived from clusters obtained by the Gath-Geva (GG) algorithm. To preserve the partitioning of the antecedent space, linearly transformed input variables can be used in the model. This may, however, complicate the interpretation of the rules. To form an easily interpretable model that does not use the transformed input variables, a new clustering algorithm is proposed, based on the expectation-maximization (EM) identification of Gaussian mixture models. This new technique is applied to two well-known benchmark problems: the MPG (miles per gallon) prediction and a simulated second-order nonlinear process. The obtained results are compared with results from the literature.

摘要

本文探讨了通过聚类构建可解释的高木-关野(Takagi-Sugeno,TS)模糊模型的方法。首先,展示了如何从通过加思-格瓦(Gath-Geva,GG)算法得到的聚类中推导出TS模型的前件模糊集和相应的后件参数。为了保持前件空间的划分,可以在模型中使用线性变换后的输入变量。然而,这可能会使规则的解释变得复杂。为了形成一个不使用变换后输入变量的易于解释的模型,基于高斯混合模型的期望最大化(EM)识别方法,提出了一种新的聚类算法。这种新技术被应用于两个著名的基准问题:每加仑英里数(MPG)预测和一个模拟的二阶非线性过程。将得到的结果与文献中的结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验