Goëffon Adrien, Richer Jean-Michel, Hao Jin-Kao
University of Angers, Lavoisier, France.
IEEE/ACM Trans Comput Biol Bioinform. 2008 Jan-Mar;5(1):136-45. doi: 10.1109/TCBB.2007.1065.
The Maximum Parsimony (MP) problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of genetic transformations. To solve this NP-complete problem, heuristic methods have been developed, often based on local search. In this article, we focus on the influence of the neighborhood relations. After analyzing the advantages and drawbacks of the well-known Nearest Neighbor Interchange (NNI), Subtree Pruning Regrafting (SPR) and Tree-Bisection-Reconnection (TBR) neighborhoods, we introduce the concept of Progressive Neighborhood (PN) which consists in constraining progressively the size of the neighborhood as the search advances. We empirically show that applied to the Maximum Parsimony problem, this progressive neighborhood turns out to be more efficient and robust than the classic neighborhoods using a descent algorithm. Indeed, it allows to find better solutions with a smaller number of iterations or trees evaluated.
最大简约法(MP)问题旨在从DNA序列重建系统发育树,同时尽量减少基因转变的数量。为了解决这个NP完全问题,人们开发了启发式方法,这些方法通常基于局部搜索。在本文中,我们关注邻域关系的影响。在分析了著名的最近邻交换(NNI)、子树剪接重接(SPR)和树二分重连(TBR)邻域的优缺点后,我们引入了渐进邻域(PN)的概念,它包括随着搜索的推进逐步限制邻域的大小。我们通过实验表明,应用于最大简约法问题时,这种渐进邻域比使用下降算法的经典邻域更高效、更稳健。事实上,它能够以更少的迭代次数或评估的树找到更好的解决方案。